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The Non-Probability Sampling Explosion

* Global SSS for online research 19% to 35% from 2006-12
* 43% of all surveys conducted online in 2012

* Online surveys used by all types of organizations
— Commercial
— Academic
— Government



Non-Probability Sampling (NPS) Literature

* Two AAPOR panels
* Monograms

* Ever increasing number of journal articles from many
disciplines

* International scope



What Is THE Issue

* Representation

* Probability sampling is strong on representation

— Fixed sampling frame and probabilities of selection basis for
inference that is relatively robust despite problems

* Non-probability sampling weaker on representation
— Models and assumptions that are hard to justify or test




NPS Online Design Approaches

* Matching

— ldentify units from a probability sample or census that have
characteristics highly related to the key survey outcome
variables and locate NPS respondents matching those
characteristics

* Quotas

— Essentially the same as matching but typically based on
demographic variables

* Blending

— Combining samples; sometimes NPS with probability sample
and sometimes multiple NPS



Typical NPS Weighting Approaches

* Weight observed sample with initial weights of unity
— Unweighted
— Poststratification or raking
— Inverse Probability Weighting (IPW)



Poststratification or Raking

* Consider Outcome model
Eoy, =u+a,=u, forall kes, , g=1,...,G

* Poststratification (unweighted poststratification cell
mean adjusted to population total for the cell) is
unbiased under this model

* Poststratification is criticized as not accounting for
selection bias
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Inverse Probability Weighting

* Consider Missingness Model
E, (R, |Z) =7z,

where 7z, is propensity of unit k

* Inverse of propensity score adjustment (observation
weighted using reference sample, see Lee (2006)) is
unbiased under this model

= |PW criticized as being unstable when propensities are
extreme
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A Compositional Model

* First IPW then poststratification to give {w,}
* Lee and Valliant (2009) describe this weighting method

* Related to calibration and doubly robust augmented IPW
(AIPW), but called compositional because only counts of
population controls allowed (GREG not in this class)



Properties

1) w, >0Vkes

2)2kes w0, =N where N is a vector of pop totals

3) Estimates of totals are linear or smooth function of
estimated totals

4) Unbiased and consistent if either outcome or
missingness model holds
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Marginal Structural Model

* Structural model specified by mean and variance models.

* Assume a population structure with clustering generates
the data and observations within cluster may be
correlated (for variance computation).

* Resample clusters to estimate variance of estimates

* Under the models y__ is unbiased and consistent and,
with large samples, 95% Cl is
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Case Study

* Collaboration between Pew Research Center,
SurveyMonkey, and Westat.

* SurveyMonkey Audience Panel (9/14)
— 5,301 adult respondents

* ABS (mail) survey (9-10/14) RR=29%
— 2,668 respondents
— Serves as reference sample



Weighting Methods

IPW Raking
Raking None 7 dimensions
IPW-L Logistic - 4 groups None
Comp-L Logistic - 4 groups 7 dimensions
Comp-N Exact - 16 groups 7 dimensions

 Variance computed using jackknife based on MSA of
respondent




Comparing Web and Mail Substantive Estimates
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Diagnostics

* Examine effects and assumptions
— Begin with bias reduction due to raking
— Assess propensity model fit and IPW adjustments
— Assess outcome model for a particular estimate



Effect of Poststratification or Raking on Bias

* The Relative Raking Effect (RE) is a measure of how
much an estimate changes (relative to the IPW estimate)
due to raking.

* Computed for substantive items in Web survey is a
modification of the poststratified measure

RE(y) :100[

Zg Ng I\Ali;\%v,g yg _Zg S79
Zg yg




Relative Raking Effect for Substantive Items

Effect of Raking

Little effect on estimates when
percentage is greater than 20%

Relative percent change of estimate due to raking (RE)

Estimated percent




Common Support Analysis

* [IPW is intended to reduce selection bias

* Commonly used tool of causal analysis is examination of
the propensity distributions of the control (in our case
Mail PS survey) and treated sample (Web NPS survey)

— Shown for the IPW-L propensities




IPW-L Propensity Distribution
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IPW Adjustment Factors

* The graph shows weak evidence for the common support
assumption and raises concerns about the effectiveness
and stability of the IPW adjustments

* Considerable range of weights and instability when using
the logistic regression approach (IPW-L)



IPW-N Relative Adjustment Factors

Percent of observations
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Closer Look at Outcome Model

* Under model we would assume standardized differences
from the “predicted” mean would be approximately
N(0,1)

* Examine this for “how you rate your health” by
computing residuals from raking dimension means across
other raking dimensions



QQ Plot of Residuals for Comp-N estimates

Relative Raking Effect for Health Item Estimates
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Variance Estimation

* Estimated desigh effect (deff) is not simply the
clustering and weight adjustment effect

* Median deff for Comp-L is 14.9 (mean 48.3)
— Without replicating, median is 5.8/mean 6.2
— Hugely unstable logistic model of propensity

* Median deff for Comp-N is 5.5 (mean 6.5)
— No difference with replicating IPW-N

— This means the effective sample size is closer to 1,000 than
5,000



Discussion

* The formal structure helps in evaluating NPS
* Assumptions for unbiased estimation not well supported

* We need more evaluation tools

— Especially tools for understanding when estimates from NPS
may be more reliable are needed



What About PS?
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* Tools and more theory needed for PS since 10% response
rates and low coverage rates are too far from
assumptions of design-based theory

* Compositional model may be applicable

— Current set of tools for evaluating effectiveness of
weighting are very limited
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