Outlier Review During Concurrent Seasonal Adjustment of CES State and Area Series

Jonathan Creem

Disclaimer

All views expressed in this presentation are those of the authors and do not necessarily reflect the views or policies of the U.S. Bureau of Labor Statistics.

Introduction

Introduction

- Current Employment Statistics (CES) State and Area program
- Publish over 2,000 seasonally adjusted series each month
- Covering over 400 subnational geographic areas

Traditional Seasonal Adjustment

- Seasonal factors have traditionally been developed using historical employment data forecasted for one year
- Employ the "Two Step" adjustment method
- Outsized impact of various events can have a significant impact on localized areas.

Concurrent Seasonal Adjustment

- CES National has been conducting concurrent adjustment since 2003
- Research was done to investigate the viability of switching to a concurrent seasonal adjustment process in 2015
- Evidence showed that concurrent would make seasonally adjusted data more accurate and less volatile
 - ► Mance (2015)

- Additive Outlier
- New York Information
- Aug. 2011: OTMC-15,300 (-6%)
- May 2016: OTMC -11,600 (-4%)

Louisiana

Accommodation and Food Services

- Level Shift
- Louisiana Accom. and Food Service
- OTMC -29,100 (-17%)

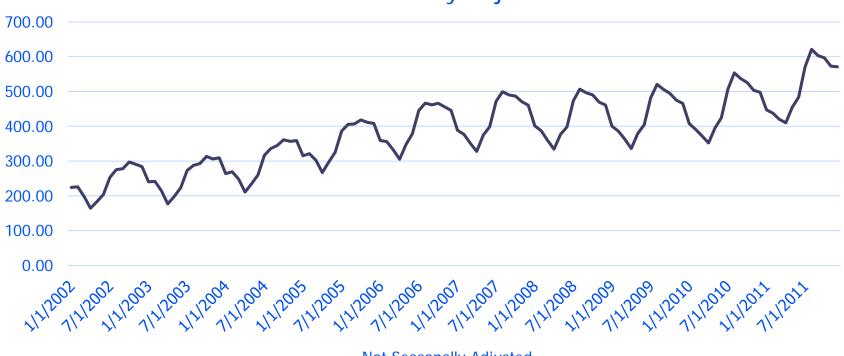
Research Motivation

Research Motivation

- Enhance outlier detection capabilities during concurrent seasonal adjustment
 - ► McDonald-Johnson and Hood (2001)
- Gains from stricter Critical Value policy

ARIMA Models and Parameters

ARIMA Models and Parameters										
ARIMA Model	AR	MA	AR12	MA12	d	d12				
(0,1,1)(0,1,1)	-	0.23	-	0.68	1	1				
(0,2,1)(0,1,1)	-	0.72	-	0.71	2	1				
(1,1,0)(0,1,1)	0.43	-	-	0.71	1	1				
(0,1,0)(1,1,0)	-	-	-0.54	-	1	1				

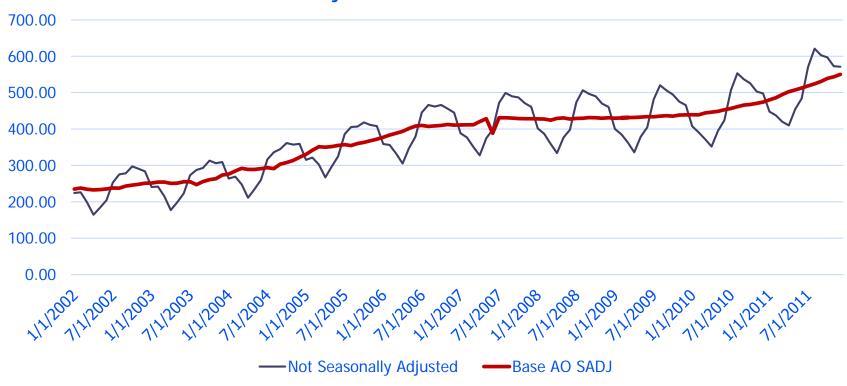

Exogenous Events

Exogenous Events										
Event	Description	Scenario	Model	Graphic						
Additive Outlier (AO)	Series is impacted at a single point in time (t)	Labor Strikes	1 for $t = t0$ 0 for $t \neq t0$	•						
Level Shift (LS)	Series is impacted and continues at new level	Hurricane Katrina	-1 for t < t0 0 for t ≥ t0							

■ 1,000 series per model

Not Seasonally Adjusted

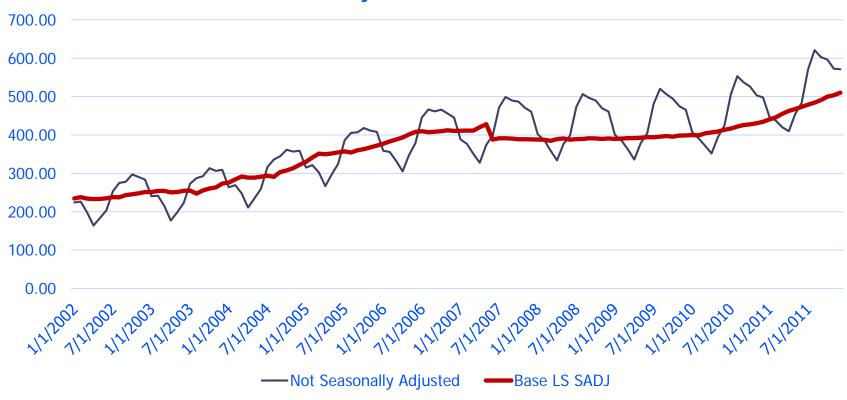
Seasonally Adjusted



Seasonally Adjusted:

where $Z_t = ARIMA$ model noise component

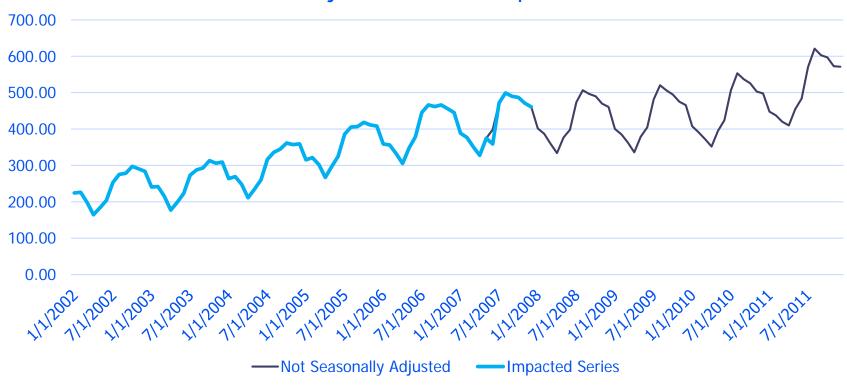
Baseline Adjustment with Additive Outlier



Seasonally Adjusted:

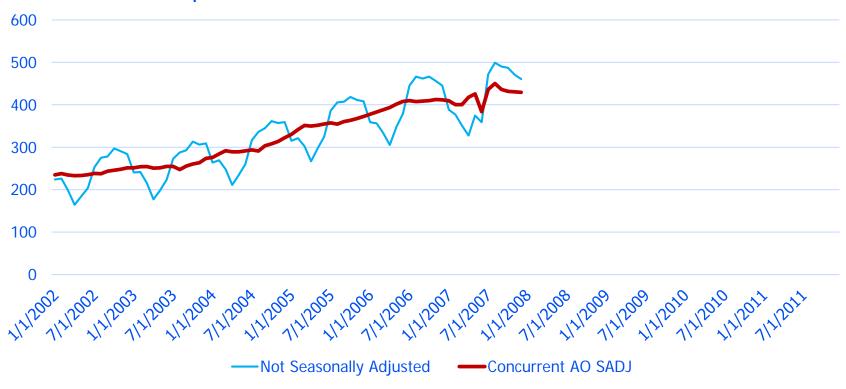
where $Z_t = ARIMA$ model noise component

Baseline Adjustment with Level Shift

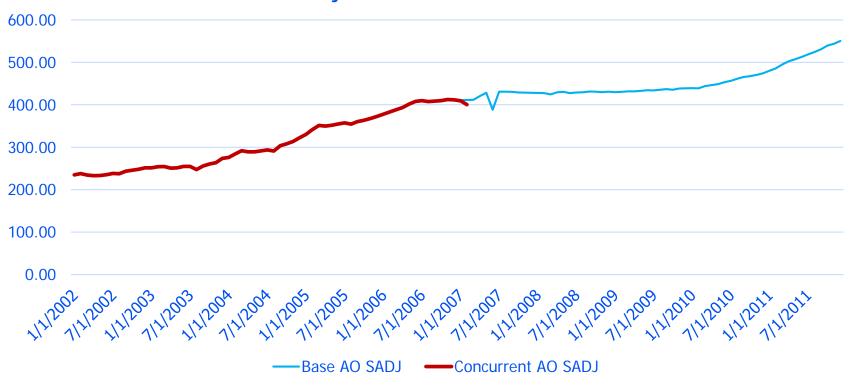


Seasonally Adjusted:

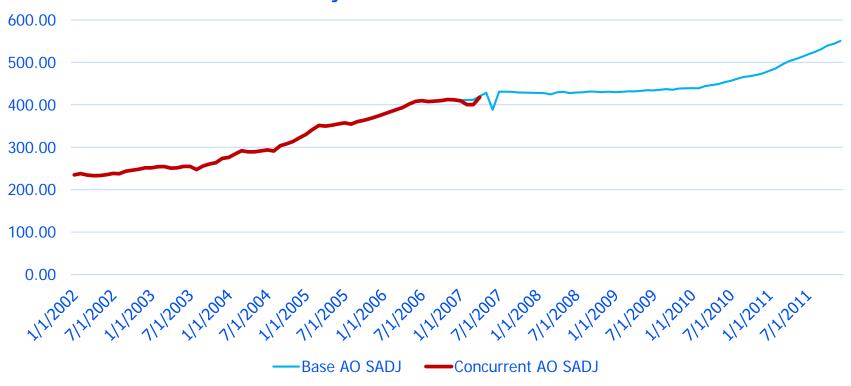
where $Z_t = ARIMA$ model noise component


Baseline Adjustment with Impacted Series

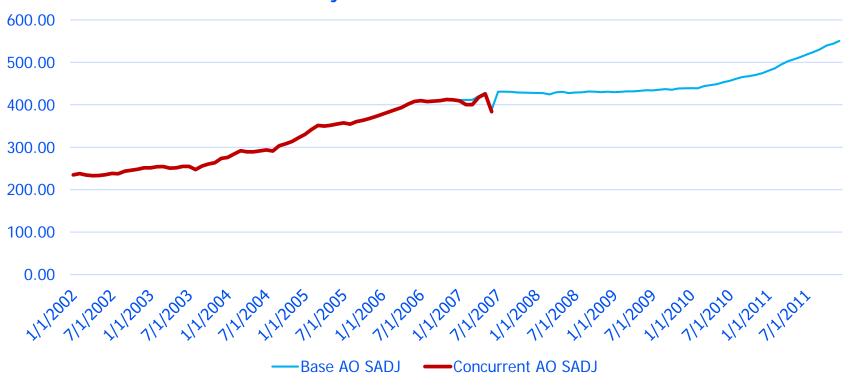
where Z_t = ARIMA model noise component AO_t = Additive outlier detection parameter


Impacted Series with Concurrent Additive Outlier

where Z_t = ARIMA model noise component AO_t = Additive outlier detection parameter


Baseline Adjustment with Additive Outlier

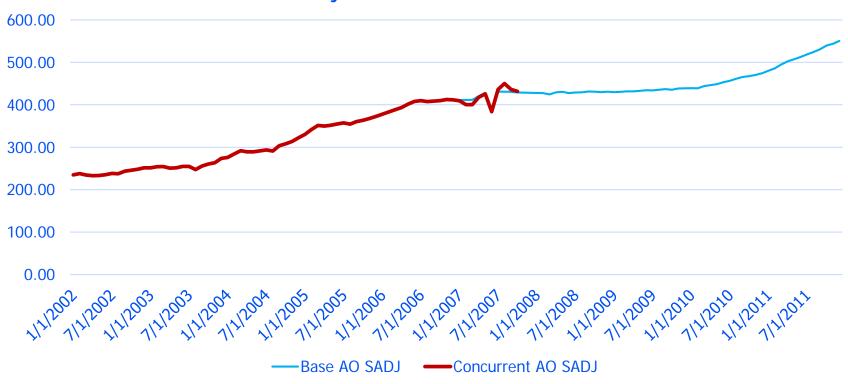
where Z_t = ARIMA model noise component AO_t = Additive outlier detection parameter


Baseline Adjustment with Additive Outlier

where Z_t = ARIMA model noise component AO_t = Additive outlier detection parameter

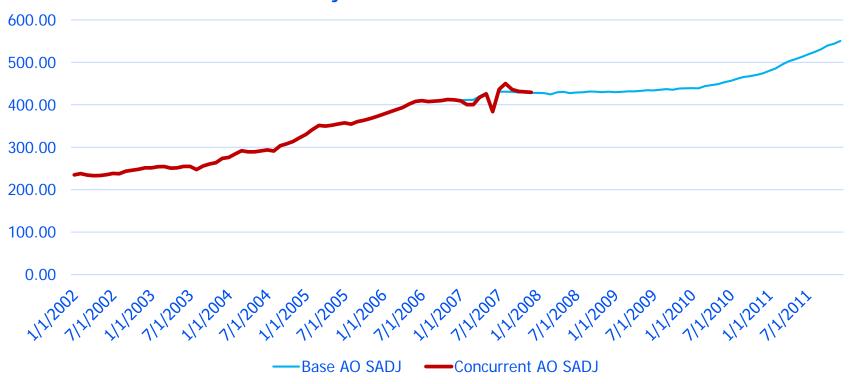

Baseline Adjustment with Additive Outlier

where Z_t = ARIMA model noise component AO_t = Additive outlier detection parameter


Baseline Adjustment with Additive Outlier

where Z_t = ARIMA model noise component AO_t = Additive outlier detection parameter

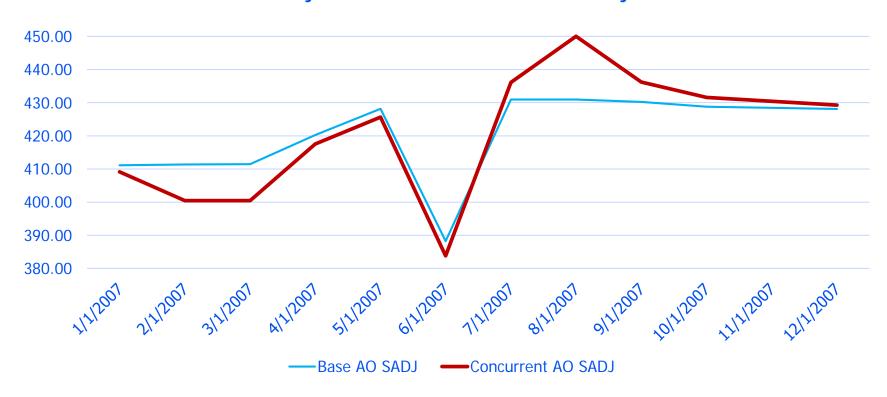
Baseline Adjustment with Additive Outlier



$$y_t = AOt\beta + Z_t$$

where Z_t = ARIMA model noise component AO_t = Additive outlier detection parameter

Baseline Adjustment with Additive Outlier



$$y_t = AOt\beta + Z_t$$

where Z_t = ARIMA model noise component AO_t = Additive outlier detection parameter

Baseline Adjustment with Concurrent Adjustment

$$y_t = AOt\beta + Z_t$$

where Z_t = ARIMA model noise component AO_t = Additive outlier detection parameter

Event / Model		(1	Impact (In terms of equivalent t-value)					
		0.00	3.85	5.00	8.00	10.00	99.00	
	3.85							
	5.00							
Critical	8.00							
Value	10.00							
	No Detection							

Event / Model		(1	Impact (In terms of equivalent t-value)					
		0.00	3.85	5.00	8.00	10.00	99.00	
	3.85		X					
	5.00			Χ				
Critical	8.00				Х			
Value	10.00					Х		
	No Detection							

Event / Model		(1	Impact (In terms of equivalent t-value)					
		0.00	3.85	5.00	8.00	10.00	99.00	
	3.85	X						
	5.00	Χ						
Critical	8.00	Χ						
Value	10.00	Х						
	No Detection	X						

Event / Model		(1	Impact (In terms of equivalent t-value)					
		0.00	3.85	5.00	8.00	10.00	99.00	
	3.85							
	5.00							
Critical	8.00							
Value	10.00							
	No Detection	X	X	Х	X	Х	X	

Event / Model		Impact (In terms of equivalent t-value)					
		0.00	3.85	5.00	8.00	10.00	99.00
	3.85						
	5.00						
Critical	8.00						
Value	10.00			Natio	nal CES		
	No Detection						

Gains from stricter Critical Value policy

AO (0,1,1)(0,1,1)		(1	Impact (In terms of equivalent t-value)						
(0,1,1)	(0,1,1)	0.00	3.85	5.00	8.00	10.00	99.00		
	3.85	4.386	4.579	4.480	4.429	4.430	4.430		
	5.00	4.383	4.686	4.577	4.432	4.429	4.430		
Critical	8.00	4.383	4.857	4.939	4.671	4.480	4.430		
Value	10.00	4.383	4.856	4.968	4.999	4.787	4.430		
	No Detection	4.383	4.856	4.967	5.105	5.172	14.895		

Gains from stricter Critical Value policy

$$RMSE\ ratio_{e,m}\left(r\right) = \frac{RMSE\left(r_{e,m}^{sv}\right)}{RMSE\left(r_{e,m}^{nv}\right)}$$

$$RMSE\ ratio_{e,m}(r) = 1$$
 "No Value"

Numerators = RMSE of stricter CV for event *e* and model *m*Denominator = RMSE of no CV for event *e* and model *m*

Gains from stricter Critical Value policy

AO (0,1,1)(0,1,1)		Impact (In terms of equivalent t-value)						
(0,1,1)	(0,1,1)	0.00	3.85	5.00	8.00	10.00	99.00	
	3.85	1.001	0.943	0.902	0.868	0.857	0.297	
	5.00	1.000	0.965	0.922	0.868	0.856	0.297	
Critical	8.00	1.000	1.000	0.994	0.915	0.866	0.297	
Value	10.00	1.000	1.000	1.000	0.979	0.926	0.297	
	No Detection	1.000	1.000	1.000	1.000	1.000	1.000	

Gains from stricter Critical Value policy

AO (0,1,1)(0,1,1)		(1	Impact (In terms of equivalent t-value)					
(0,1,1)	(0,1,1)	0.00	3.85	5.00	8.00	10.00	99.00	
	3.85	1.001	0.943	0.902	0.868	0.857	0.297	
	5.00	1.000	0.965	0.922	0.868	0.856	0.297	
Critical	8.00	1.000	1.000	0.994	0.915	0.866	0.297	
Value	10.00	1.000	1.000	1.000	0.979	0.926	0.297	
	No Detection	1.000	1.000	1.000	1.000	1.000	1.000	

Conclusion

Conclusion

- Transition to Concurrent Seasonal Adjustment
- Marginal gain from conducting outlier detection
- Model differences
 - ► No significant differences in terms of measure of gain

