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1. Introduction

v

The 21st Century has seen a flourish of statistical data science.

v

This is driven by an unprecedented capability of collecting data, or
information.

» Sometimes, there is too much “information”;
> yet, in some other cases, there is (still) not enough.

> In any cases, especially in the latter, the idea of “borrowing strength”
comes along.
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Introduction

» The term was originated from Tukey back in the 1960s.
» An ancient story from “Three kingdoms” (220-280 AD)

» A “modern” story: IQ test (hypothetical; Mood et al. 1974, 370)

v

Suppose the IQ of students in a particular age group are normally
distributed with mean 100 and s.d. 15.

v

It is also known that, for a given student, the test scores are normally
distributed with mean equal to the student’s IQ and s.d. equal to 5.
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» Suppose that a student just took an IQ test and scored 130.

v

What is the best prediction of the student’s 1Q?

v

The answer is not 130.

» Why not?

v

If I had not told you the previous stories, the answer would be 130.
But ...

» What stories?
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prediction of the person’s 1Q: 127.

» Don't ask me how | get it (conditional expectation under Gaussian
distribution).

» Bottom line: One can do better with more information — a simple,
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v

“If you know more, you can do better”

» “Doing something is usually (not always) better than doing nothing’

“There's no free lunch”

v

» We can borrow strength by utilizing a statistical model.

v

A statistical model allows you to, all of a sudden, known a lot more;
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Introduction

» Some “common sense” lines:

v

“If you know more, you can do better”

v

“Doing something is usually (not always) better than doing nothing’

v

“There's no free lunch”

» We can borrow strength by utilizing a statistical model.

v

A statistical model allows you to, all of a sudden, known a lot more;
but you don’t know that for sure.

v

Therefore, there is a little bit of “gamble”, but it's an educated
gamble.
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2009, ch. 5, Lohr 2022, ch. 11).

v

Little (2008): Two approaches to weighting the survey data,

Yu = Z W;Yi-
i=1

v

1. Model-based (linear regression): y; = 23 + €;, var(e;) = 02/ai, a;
known. Choose w; o< a;.
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2. Statistical modeling in surveys

» The use of statistical models in surveys is well established (e.g., Fuller
2009, ch. 5, Lohr 2022, ch. 11).

v

Little (2008): Two approaches to weighting the survey data,
n

Yw = szyz
i=1

v

1. Model-based (linear regression): y; = 23 + €;, var(e;) = 02/ai, a;
known. Choose w; o< a;.

v

2. Design-based: Choose w; o< 1/m;, m; = selection probability.

v

Which one is correct?

» Does it matter?
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v

Does truth, or existence of truth, matter?

» “You can’t handle the truth” — Jack Nicholson, “A Few Good Men"

v

“All models are wrong ... some are useful” — George Box

v

“It doesn’t matter whether a cat is white or black, as long as it
catches mice” — Deng Xiaoping, former Chinese leader

v

It doesn't matter whether a statistical model is right or wrong, as
long as it helps.
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v

Example. Discrete response model (e.g., McFadden & Kenneth 2000).
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v

Example. Discrete response model (e.g., McFadden & Kenneth 2000).

» Long-term: “Forever green is the tree of life" (Johann Wolfgang von
Goethe, Faust: Part ).

v

Example (cont.). Many real-life applications in Economics (leading to
the 2000 Nobel Prize in Economical Sciences), and other fields.
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» How do we know a model is a good one (if there is no “right” model)?

v

Short-term and long-term answers.

» Short-term: The model has to be reasonable by the common sense.

v

Example. Discrete response model (e.g., McFadden & Kenneth 2000).

» Long-term: “Forever green is the tree of life" (Johann Wolfgang von
Goethe, Faust: Part ).

v

Example (cont.). Many real-life applications in Economics (leading to
the 2000 Nobel Prize in Economical Sciences), and other fields.

v

Example 2. Small area estimation (later).
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» Previous Morris Hansen Lectures: Use of models in surveys

Graham Kalton (2000) discussed what he called model-dependent
methods; identified three areas in which models are particularly
useful: SAE, missing data, and variance estimation.

v

» He discussed, in particular, the SAIPE (Small Area Income & Poverty
Estimation) program and its evaluations.

v

Concluded that " careful attention needs to be paid to the
development of an appropriate model and its evaluation”.

v

Rick Valliant (2022) discussed history of explicit models used in
sample design and estimation, including an earlier paper of Hansen
(1961), in which the author found purely design-based approach was
inadequate for analyzing surveys subject to non-responses and other
problems.
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1. The super-population (SP) modelling

v

2. Bayesian modelling

v

Under an SP model, the finite (real) population is assumed to be a
random sample from a “super-population”.
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» Two major variants of statistical modelling (Little 2008)

v

1. The super-population (SP) modelling

v

2. Bayesian modelling

v

Under an SP model, the finite (real) population is assumed to be a
random sample from a “super-population”.

v

A random sample, Y, from the super-population is assumed to have
distribution p(Y'|#), where the probability distribution, p(:|6), is
specified under an assumed model (e.g., regression) and @ is the
vector of parameters under the model.
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Statistical modeling in surveys

v

Here, we focus on parametric models for simplicity.

v

Under a Bayesian model, there is additional prior information about 6,
in terms of a prior distribution, 7(8).

v

The prior distribution for Y is then expressed as

x(Y) = f p(Y]6)7(0)do.

v

The posterior inference about the non-sampled part of the population
is then carried out via the Bayes' Theorem.
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3. Model selection

v

Needs for model selection (e.g., Lahiri 2001, Pfeffermann 2013,
Lumley and Scott 2017)

v

“Selection” is the key word.

v

Example: Choice of weights.

v

Traditional approaches: Information criteria, shrinkage
selection/estimation (e.g., Miiller et al. 2013).

» Big question: Is model selection a statistical problem?

v

Answer: No, it's not.
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» If not, why is a criterion for model selection, such as the AIC, solely
based on statistical consideration?

» Practical considerations, specific to the real-life problem we're dealing
with, must be taken into consideration.

» How?

» The fence methods (Jiang et al. 2008); also see Miillet et al. 2013,
Pfeffermann 2013, Rao & Molina 2015, Jiang & Nguyen 2016).
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» If not, why is a criterion for model selection, such as the AIC, solely
based on statistical consideration?

v

Practical considerations, specific to the real-life problem we're dealing
with, must be taken into consideration.

v

How?

v

The fence methods (Jiang et al. 2008); also see Miillet et al. 2013,
Pfeffermann 2013, Rao & Molina 2015, Jiang & Nguyen 2016).

v

Idea: 1. Build a “statistical fence” to satisfy statistical consideration
of model fitting. The fence isolates a subset of candidate models that
meet the model-fitting threshold.
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Model selection

» 2. Within the fence, incorporate other considerations to identify the
optimal model.

v

For example, parsimony is one “other” consideration that is often
used;

v

but (here is the key) practical considerations can also be incorporated
in searching for the optimal model within the fence.

» Such practical considerations can be scientific, economical, legal, or
political (e.g., the model must not require privacy-protected
information to “train").

v

3. Finally, the threshold of the fence may be determined based on the
principle of “letting the data speak”.
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QM) -Q(M.) <c,

where Q(+) is a measure of lack-of-fit, M is a candidate model, and
M, is a (candidate) model that is optimal in terms of model fitting
(i.e., one that minimizes Q).
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Model selection

» Building the fence:
QM) -Q(M.) <c,

where Q(+) is a measure of lack-of-fit, M is a candidate model, and
M, is a (candidate) model that is optimal in terms of model fitting
(i.e., one that minimizes Q).

» For example, in regression model selection, let M; denotes the full
model, that is, the model that includes all of the candidate predictors.

» If @ is the SSR (sum of squares of residuals), then M, = M.
» Another popular choice of @ is the negative log-likelihood, which

applies beyond the linear models. See Jiang & Nguyen (2016) for
other examples of Q.
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parsimony be the criterion of selecting the optimal model within the
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parsimony be the criterion of selecting the optimal model within the
fence.

» Also, for simplicity, consider a “classical” setting, in which the space
of candidate models contains a true model, that is, a model under
which the data are samples generated.
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» A challenging problem: How to choose ¢, the threshold of the fence?

» Example (Adaptive fence; Jiang et al. 2008, 2009): To be specific, let
parsimony be the criterion of selecting the optimal model within the
fence.

» Also, for simplicity, consider a “classical” setting, in which the space
of candidate models contains a true model, that is, a model under
which the data are samples generated.

» Under such a setting, an “over-fitting model”, that is, a model that
includes the true model as a special case, is also a correct model; it
may not be optimal, though, because it can be simplified.
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Model selection

» A challenging problem: How to choose ¢, the threshold of the fence?

v

Example (Adaptive fence; Jiang et al. 2008, 2009): To be specific, let
parsimony be the criterion of selecting the optimal model within the
fence.

v

Also, for simplicity, consider a “classical” setting, in which the space
of candidate models contains a true model, that is, a model under
which the data are samples generated.

v

Under such a setting, an “over-fitting model”, that is, a model that
includes the true model as a special case, is also a correct model; it
may not be optimal, though, because it can be simplified.

v

In particular, M; is a correct model.
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Model selection

» Let M. denotes the model selected using the fence procedure with
the given threshold c.
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» |deally, one would like to choose ¢ such that
P =P(M. = Mqp) (1)

is maximized, where M, denotes the optimal model.
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Model selection

» Let M, denotes the model selected using the fence procedure with
the given threshold c.

» |deally, one would like to choose ¢ such that
P =P(M. = Mqp) (1)
is maximized, where M, denotes the optimal model.

» However, two things are unknown in (1).

» 1. How to compute the probability, P, which depends on the
underlying model?
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Model selection

» Let M, denotes the model selected using the fence procedure with
the given threshold c.

v

Ideally, one would like to choose ¢ such that
P =P(M, = Mopt) (1)
is maximized, where M, denotes the optimal model.

» However, two things are unknown in (1).

» 1. How to compute the probability, P, which depends on the
underlying model?

v

2. What is Mqpt.
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Model selection

» |dea 1: Because we know M is, at least, a correct model, we can
bootstrap under M.
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Model selection

» Idea 1: Because we know M is, at least, a correct model, we can
bootstrap under M.

> ldea 2: "Maximum likelihood”. For a given candidate model, M, let
p* (M) =P*(M,.= M), that is, the empirical (bootstrap) probability
that M is selected.
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» Idea 1: Because we know M is, at least, a correct model, we can
bootstrap under M.

> ldea 2: "Maximum likelihood”. For a given candidate model, M, let
p* (M) =P*(M,.= M), that is, the empirical (bootstrap) probability
that M is selected.

> Let p* be the maximum of p* (M) overall candidate models M. Note
that p* depends on ¢, that is, p* = pi..

Nov." 14, 2023, Washington, D.

Jiming Jiang (UCD) MMP & SAE 21/33



Model selection

v

Idea 1: Because we know M is, at least, a correct model, we can
bootstrap under M.

v

I[dea 2: “Maximum likelihood”. For a given candidate model, M, let
p* (M) =P*(M,.= M), that is, the empirical (bootstrap) probability
that M is selected.

v

Let p* be the maximum of p* (M) overall candidate models M. Note
that p* depends on ¢, that is, p* = pi..

» That is exactly the point!
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Model selection

v

Idea 1: Because we know M is, at least, a correct model, we can
bootstrap under M.

v

I[dea 2: “Maximum likelihood”. For a given candidate model, M, let
p* (M) =P*(M,.= M), that is, the empirical (bootstrap) probability
that M is selected.

v

Let p* be the maximum of p* (M) overall candidate models M. Note
that p* depends on ¢, that is, p* = pi..

» That is exactly the point!

v

Choose ¢ that maximizes p;..
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Model selection

> It should be noted that such a plot of p; vs ¢ is typically W shaped,
rather than A shaped.
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Model selection

> It should be noted that such a plot of p; vs ¢ is typically W shaped,
rather than A shaped.

> Why?
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Model selection

» It should be noted that such a plot of p) vs ¢ is typically W shaped,
rather than A shaped.

> Why?
» What happens when ¢ =07
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Model selection

v

It should be noted that such a plot of p; vs c is typically W shaped,
rather than A shaped.

Why?
What happens when ¢ =07
Recall Q(M) - Q(Ms) < c.

v

v

v
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Model selection

v

It should be noted that such a plot of p; vs c is typically W shaped,
rather than A shaped.

Why?

What happens when ¢ =07

Recall Q(M) - Q(Ms) < c.

» M = M; is the choice, every single time; hence pj = 1.

v

v

v
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Model selection

v

It should be noted that such a plot of p) vs c is typically W shaped,
rather than A shaped.

Why?

What happens when ¢ =07

Recall Q(M) - Q(Ms) < c.

» M = M; is the choice, every single time; hence pj = 1.

v

v

v

v

Similarly, when c is sufficiently large, everybody is in the fence; as a
result, M, is the model that has the minimum dimension (assumed
unique), denoted by My, every single time.
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Model selection

v

It should be noted that such a plot of p) vs c is typically W shaped,
rather than A shaped.

Why?

What happens when ¢ =07

Recall Q(M) - Q(Ms) < c.

» M = M; is the choice, every single time; hence pj = 1.

v

v

v

v

Similarly, when c is sufficiently large, everybody is in the fence; as a
result, M, is the model that has the minimum dimension (assumed
unique), denoted by My, every single time.

» Thus, once again, p. =1, if ¢ is sufficiently large.
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Model selection

v

It should be noted that such a plot of p) vs c is typically W shaped,
rather than A shaped.

Why?

What happens when ¢ =07

Recall Q(M) - Q(Ms) < c.

» M = M; is the choice, every single time; hence pj = 1.

v

v

v

v

Similarly, when c is sufficiently large, everybody is in the fence; as a
result, M, is the model that has the minimum dimension (assumed
unique), denoted by My, every single time.

» Thus, once again, p. =1, if ¢ is sufficiently large.
» One is typically looking for the “peak in the middle”.
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4. Example

> Battese, Harter & Fuller (1988; BHF) presented data for 12 lowa
counties obtained from the 1978 June Enumerative Survey of the U.S.
Dept. of Agriculture.
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> Battese, Harter & Fuller (1988; BHF) presented data for 12 lowa
counties obtained from the 1978 June Enumerative Survey of the U.S.
Dept. of Agriculture.

> Also available were data from land observatory satellites on crop areas
involving corn and soybeans.

» This is a classical example of borrowing strength via a statistical
model.
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4. Example

> Battese, Harter & Fuller (1988; BHF) presented data for 12 lowa
counties obtained from the 1978 June Enumerative Survey of the U.S.
Dept. of Agriculture.

> Also available were data from land observatory satellites on crop areas
involving corn and soybeans.

» This is a classical example of borrowing strength via a statistical
model.

» The latter is a linear mixed model (LMM) in the form of
Yij = T30 + vi + e,
1=1,...,m,j=1,...,n; where ...
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> The authors discussed the choice of ngﬁ in the LMM, which is
viewed as a model selection problem.
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» The authors discussed the choice of x;jﬁ in the LMM, which is
viewed as a model selection problem.

> They suggested .CC:JB = ,80 + leijl + 52.’157;]'2, where Tij1 and Zijo are
the numbers of pixels classified as corn and soybeans, respectively, for
both the corn observation and the soybeans observation.
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» The authors discussed the choice of x;jﬁ in the LMM, which is
viewed as a model selection problem.

> They suggested .CC:JB = ,80 + leijl + 52.’157;]'2, where Tij1 and Zijo are
the numbers of pixels classified as corn and soybeans, respectively, for
both the corn observation and the soybeans observation.

> Why?
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v

The authors discussed the choice of z};3 in the LMM, which is
viewed as a model selection problem.

v

They suggested .CC:JB = ,80 + leijl + 52.’157;]'2, where Tij1 and Zijo are
the numbers of pixels classified as corn and soybeans, respectively, for
both the corn observation and the soybeans observation.

v

Why?

v

This is what Fuller said: ...
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v

The authors discussed the choice of z};3 in the LMM, which is
viewed as a model selection problem.

v

They suggested x:JB = ,80 + leijl + ngijg, where Tij1 and Zijo are
the numbers of pixels classified as corn and soybeans, respectively, for
both the corn observation and the soybeans observation.

v

Why?

v

This is what Fuller said: ...

v

Nevertheless, the authors also discussed other choices of acgjﬂ, such as
including the squares and cross product of z;j.,7 = 1,2.
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» If we consider this as a variable selection problem, the space of
candidate predictors may be chosen as

2 2
{17 LTijls Xij2, Tij2, Lij2; mijlxiﬂ}'
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» If we consider this as a variable selection problem, the space of
candidate predictors may be chosen as

2 2
{17 LTijls Xij2, Tij2, Lij2; xijlxiﬂ}‘

> If we apply the fence methods, a standard measure of lack-of-fit, @, is
the negative log-likelihood.
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» If we consider this as a variable selection problem, the space of
candidate predictors may be chosen as

2 2
{17 LTijls Xij2, Tij2, Lij2; xijlxiﬂ}‘
> If we apply the fence methods, a standard measure of lack-of-fit, @, is

the negative log-likelihood.

» For simplicity, let us use the parsimony criterion for selecting the
model within the fence.
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v

If we consider this as a variable selection problem, the space of
candidate predictors may be chosen as

2 2
{1, LTijls Xij2, Tij2, Lij2; xijlxiﬂ}‘

v

If we apply the fence methods, a standard measure of lack-of-fit, @, is
the negative log-likelihood.

v

For simplicity, let us use the parsimony criterion for selecting the
model within the fence.

v

The threshold, ¢, is chosen adaptively as described above.
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» The selection results, compared with the BHF models, are presented
in the table below:

Outcome Variable Predictors
BHF Model Adaptive Fence

Corn Corn & Soybeans Corn
Soybeans Corn & Soybeans Soybeans
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» The selection results, compared with the BHF models, are presented
in the table below:

Outcome Variable Predictors
BHF Model Adaptive Fence

Corn Corn & Soybeans Corn
Soybeans Corn & Soybeans Soybeans

» The plots of p; vs ¢?
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» AF Selection for the Crops Data. Left: p* vs ¢ = ¢, for selecting the
corn model. Right: p* vs ¢ = ¢, for selecting the soybeans model.

1
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Discussion

5. Discussion

» |t was said that a potential advantage of the fence methods is
incorporating consideration of practical interest.
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way?
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5. Discussion

» |t was said that a potential advantage of the fence methods is
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» Question: Do you have a practical example of doing the fence this
way?

» Answer: | don't.
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Discussion

5. Discussion

» |t was said that a potential advantage of the fence methods is
incorporating consideration of practical interest.

» Question: Do you have a practical example of doing the fence this
way?

v

Answer: | don't.

v

What?

A4

That's why I'm here.
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Discussion

5. Discussion

» |t was said that a potential advantage of the fence methods is
incorporating consideration of practical interest.

» Question: Do you have a practical example of doing the fence this
way?

v

Answer: | don't.

v

What?

A4

That's why I'm here.

v

It would've been nicer to come here with all questions and answers,
but it is just as important to have some questions but no answers.
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Discussion

> And | believe the answers are on their way.

“'Nov. 14, 2023, Washington, D.

Jiming Jiang (UCD) MMP & SAE



Discussion

» And | believe the answers are on their way.

» Biggest challenges in implementing the fence methods: Computation,
and artificial intelligence (Al).
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v

And | believe the answers are on their way.

» Biggest challenges in implementing the fence methods: Computation,
and artificial intelligence (Al).

v

Why computation?

» For example, the adaptive fence requires bootstrapping under the full
model.
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Discussion

v

And | believe the answers are on their way.

» Biggest challenges in implementing the fence methods: Computation,
and artificial intelligence (Al).

v

Why computation?

» For example, the adaptive fence requires bootstrapping under the full
model.

v

Bootstrap for high-dimensional model selection?
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Discussion

> Why Al?
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Discussion

> Why Al?

» For example, finding the “peak in the middle” in AF is something
human eyes can arguably do better than a computer.
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» For example, finding the “peak in the middle” in AF is something
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Discussion

v

Why Al?

» For example, finding the “peak in the middle” in AF is something
human eyes can arguably do better than a computer.

v

Really?

» Many years ago, people also said that a computer could NOT defeat
a chess (or go) grand master.
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Discussion

v

Why Al?

» For example, finding the “peak in the middle” in AF is something
human eyes can arguably do better than a computer.

v

Really?

» Many years ago, people also said that a computer could NOT defeat
a chess (or go) grand master.

» We need some genius young people with good computer science
training.
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Discussion

> |dea & Execution

“'Nov." 14, 2023, Washington, D.

Jiming Jiang (UCD) MMP & SAE



» ldea & Execution

» |t may take a second to come up with a beautiful idea, but many
years of hard work to execute the idea.
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years of hard work to execute the idea.
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Discussion

» ldea & Execution

» |t may take a second to come up with a beautiful idea, but many
years of hard work to execute the idea.

» Which one is more important?

» Well, if you aim to publish a JASA paper, then Idea probably is.
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Discussion

» ldea & Execution

v

It may take a second to come up with a beautiful idea, but many
years of hard work to execute the idea.

v

Which one is more important?

v

Well, if you aim to publish a JASA paper, then Idea probably is.

v

But, look at Physics — for one thing, many Nobel prizes have been
awarded to work that executed an existing idea.
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v
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v

Which one is more important?

v

Well, if you aim to publish a JASA paper, then Idea probably is.

v

But, look at Physics — for one thing, many Nobel prizes have been
awarded to work that executed an existing idea.

v

And, there are much more, if one goes beyond academics.
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Discussion

» ldea & Execution

v

It may take a second to come up with a beautiful idea, but many
years of hard work to execute the idea.

v

Which one is more important?

v

Well, if you aim to publish a JASA paper, then Idea probably is.

v

But, look at Physics — for one thing, many Nobel prizes have been
awarded to work that executed an existing idea.

v

And, there are much more, if one goes beyond academics.

v

Real-life surveys is one of them.
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