Exchangeability Assumption in Propensity-Score Based Adjustment Methods for Population Mean Estimation Using Non-Probability Samples

Yan Li

Joint Program in Survey Methodology & Department of Epidemiology and Biostatistics, University of Maryland at College Park

3/1/22

Morris Hansen Lecture

This work has been generously supported by NIH-R03 CA252782

"Improving Population Representativeness of the Inference from Non-Probability Sample Analysis," National Institute of Health

This work is an extension of two papers

- L. Wang, B.I. Graubard, H.A. Katki, Y. Li (2021). Efficient and Robust Propensity-Score-Based Methods for Population Inference using Epidemiologic Cohorts. *International Statistical Review*.
- L. Wang, B.I. Graubard, H.A. Katki, Y. Li (2020). Improving external validity of epidemiologic cohort analyses: a kernel weighting approach, *Journal of Royal Statistical Society A*, 183, 1293-311.

Population Inference using Nonprobability Samples

- Nonprobability samples subject to Selection Bias
- Common Approaches for Improving the population representation
 Model-based Methods
 - Regression (Wang et al. 2015)
 - Propensity Score (PB)-based adjustment
 - PS Weighting (Wang, et al. 2021; Chen, et al. 2020; Elliott and Valliant, 2017; Kim, et al. 2018, Rafei et al. 2020; etc.)
 - PS Matching (Valliant and Lee 2010; River, 2007; Wang, et al. 2020; Wang, et al. 2021; Yang et al. 2021; etc)
 - Doubly Robust
- Review Paper: Beaumont (2021); Rao (2021); Valliant (2020); Yang and Kim (2020)

Assumptions

- PS-based methods
 - Propensity model
 - O Conditional Exchangeability
 - \circ Positivity
 - Representative probability sample
 - \circ etc...
- Model-based method
 - Outcome model
 - Transportability
 - o etc...

Notation

- Y: Outcome variable of interest
- X: a vector of observed covariates
- U: the set of the finite population units of size N
- C: the set of the nonprobability sample units and $C{\subset}U$
- Challenge: We observe C, which is NOT representing U

 $E_C(y) \neq E_U(y)$

Estimating E(y|U)

• Assume Conditional Exchangeability

 $E_C\{y|b(\boldsymbol{x})\} = E_U\{y|b(\boldsymbol{x})\}, \quad (*)$

where

b(x): a function of covariates x, called balancing score

- Choices of the balancing score
 Basic criteria: Distinguish C units by participation rates
 - \circ <u>A natural choice</u>: $b(\mathbf{x}) = P(i \in C | \mathbf{x}, U)$
 - Other choices: Finer than, if not equal to, $P(i \in C | x, U)$
 - *Finest* balancing score: b(x) = x
 - *Coarsest:* $b(x) = P(i \in C | x, U)$ or its monotone function (Rosenbaum and Rubin, 1983)

Estimation of $p(i \in C | x, U)$

- S: the set of a reference probability sample units with $\{x_i: i \in S\}$
- Various parametric or nonparametric models, e.g.,

$$\log\left\{\frac{p(\boldsymbol{x}_i)}{1-p(\boldsymbol{x}_i)}\right\} = \boldsymbol{B}^T g(\boldsymbol{x}_i), \quad \text{for } i \in C \cup S, \quad (1)$$

○ $p(\mathbf{x}_i)$: likelihood of being units in *C* vs. *U*, and $P(i \in C | \mathbf{x}, U) = \exp(\mathbf{B}^T g(\mathbf{x}_i))$ ○ $g(\mathbf{x}_i)$ is a known function of observed covariates

○ *B* the unknown regression coefficients

• \widehat{B}_w : Estimated by fitting (1) to combined *C* and weighted *S*

• Define
$$b(\mathbf{x}; \widehat{\mathbf{B}}_w) = \widehat{\mathbf{B}}_w^T g(\mathbf{x}_i) = \log P(i \in C | \mathbf{x}_i, U)$$
. Therefore,
 $E_C\{y | b(\mathbf{x}; \widehat{\mathbf{B}}_w)\} = E_U\{y | b(\mathbf{x}; \widehat{\mathbf{B}}_w)\}$

PS-based Adjustment Estimators

- PS-Weighting: Weight units in *C* by inverse of $\exp(b(\mathbf{x}, \widehat{\mathbf{B}}_w))$
- PS-Matching: Match units in *C* and *S* based on $b(x; \hat{B}_w)$

Properties

- Approximately unbiased (Wang et al. 2020; 2021)
- **Challenge**: Variance Inflation sample weights in *C* vs. *S* (Scott and Wild, 1986)

QUESTION: Estimate **B** ignoring survey weights in (1), \widehat{B}_0 , Define $b(\mathbf{x}; \widehat{B}_0) = \widehat{B}_0^T g(\mathbf{x}_i)$ Is $E_C\{y | b(\mathbf{x}; \widehat{B}_0)\} = E_U\{y | b(\mathbf{x}; \widehat{B}_0)\}$?

Let us think:

• $b(\mathbf{x}; \widehat{\mathbf{B}}_0)$ produces sample balance in \mathbf{x} between C and S $x \perp (C, S) | b(\mathbf{x}; \widehat{\mathbf{B}}_0)$

and therefore

$$E_{\boldsymbol{C}}\{y|b(\boldsymbol{x};\widehat{\boldsymbol{B}}_0)\} = E_{\boldsymbol{S}}\{y|b(\boldsymbol{x};\widehat{\boldsymbol{B}}_0)\}$$

• IS $E_{\boldsymbol{C}}\{y|b(\boldsymbol{x}; \widehat{\boldsymbol{B}}_0)\} = E_{\boldsymbol{U}}\{y|b(\boldsymbol{x}; \widehat{\boldsymbol{B}}_0)\}$? Equivalently, Is $b(\boldsymbol{x}; \widehat{\boldsymbol{B}}_0)$ a finer or monotone function of $b(\boldsymbol{x}; \widehat{\boldsymbol{B}}_w)$? E.g. $\widehat{\boldsymbol{B}}_0 = const. \widehat{\boldsymbol{B}}_w$. GOOD LUCK!

An Adaptive Exchangeability Assumption

• 1st step – Fit the combined sample $C \cup S$ to

$$\log\left\{\frac{p(i \in C)}{p(i \in S)}\right\} = \alpha + B^T g(\mathbf{x}_i), \quad \text{for } i \in C \cup S$$
$$\rightarrow b(\mathbf{x}; \widehat{B}_0) = \widehat{B}_0^T g(\mathbf{x}_i)$$

• 2^{nd} step – Fit the combined sample $S \cup S_w$ to

$$\log\left\{\frac{p(i \in S)}{p(i \in S_w)}\right\} = \gamma_0 + \gamma^T g(\mathbf{x}_i), \quad \text{for } i \in S \cup S_w$$
$$\rightarrow b(\mathbf{x}; \widehat{\boldsymbol{\gamma}}_w) = \widehat{\boldsymbol{\gamma}}_w^T g(\mathbf{x}_i)$$

• 3^{rd} step – Construct the new balancing score by adding them up $b'(\mathbf{x}) = \log\left\{\frac{p(i \in C)}{p(i \in S_w)}\right\} = \left(\widehat{\mathbf{\gamma}}_w^T + \widehat{\mathbf{B}}_0^T\right)g(\mathbf{x}_i), \quad \text{for } i \in C \cup S$

PS matching based on b'(x)

e.g., Kernel Weighting (KW) method by Wang et al. JRSS A 2020

$$w_j^{kw} = \sum_{i \in S} w_i \left(\frac{K\left(\frac{d_{ij}}{h}\right)}{\sum_{j \in C} K\left(\frac{d_{ij}}{h}\right)} \right) \text{ for } j \in C$$

 $\circ w_i$ is the sample weight of survey unit *i*

 \circ *K*(·) is an arbitrary kernel function such as standard normal \circ *h* is the bandwidth associated with *K*(·)

 $\circ d_{ij} = b'(\boldsymbol{x_i}) - b_0'(\boldsymbol{x_j})$

$$\bar{y}^{kw} = \frac{\sum_{j \in C} w_j^{kw} y_j}{\sum_{j \in C} w_j^{kw}}$$

- 11 -

SIMULATION STUDIES

Finite population generation U

- N=120,000
- Three covariates x_1 , x_2 , $x_3 \sim N(0,1)$ with pairwise correlations $\rho_{x_1x_3} = \rho_{x_2x_3} = 0$ and $\rho_{x_1x_2} = 0.2$
- Binary outcome Y with varying α_0 with prevalence of 29%, 15% or 7%

$$P(Y = 1) = \frac{\exp(\alpha_0 + x_1\alpha_{x_1} + x_2\alpha_{x_2} + x_1x_2\alpha_{x_1x_2})}{1 + \exp(\alpha_0 + x_1\alpha_{x_1} + x_2\alpha_{x_2} + x_1x_2\alpha_{x_1x_2})}$$

Outcome predictors: x_1 and x_2

Probability Sample (S) & Non-probability Sample (C) Selection

- $n_S = 500$ and $n_C = 1500$
- Probability proportional to size sampling with measure of size $MOS = \exp(a \times \beta^T x)$
- Probability Samples with $x = (x_1, x_3)$ in MOS \circ Vary CV(weights) by setting a = 0.1, 0.5, 1 or 2
- Nonprobability samples Unknown underlying selection process
 Quota sample on joint distributions of both x₁ and x₂
 - \circ Quota sample on distribution of x_1 or x_2
 - \circ Volunteer sample with unbalanced distributions in both x_1 and x_2

PS matching estimators of population mean

- KW with $b(x; \hat{B}_w)$ Approx. unbiased but inflated variance
- KW with $b(x; \widehat{B}_0)$ Can be biased but more efficient
- KW with b'(x) Approx. unbiased with reduced variance

Evaluation Criteria

- RelBias (%) = (mean of 300 simulated means population mean) divided by population mean × 100%
- EmpVar ($\times 10^4$) = variance of 300 simulated means
- MSE ($\times 10^4$) = square of bias + empirical variance

Results

1. Reference survey: (close to) self-weighted

$$b(\mathbf{x}; \widehat{\mathbf{B}}_0) \approx \mathbf{b}'(\mathbf{x}) \approx b(\mathbf{x}; \widehat{\mathbf{B}}_w)$$
 due to $b(\mathbf{x}; \widehat{\mathbf{\gamma}}_w) \approx \mathbf{0}$

- 2. Reference survey: variable weights
 - *a.* Quota sample on joint distribution of x_1 and x_2

 $b(\mathbf{x}; \widehat{\mathbf{B}}_0) \approx \mathbf{b}'(\mathbf{x})$ more efficient than $b(\mathbf{x}; \widehat{\mathbf{B}}_w)$

Quota sample with balanced distribution in outcome predictors

	Probability samples PPS(MOS)						
	a = 0.1	<i>a</i> = 0.5	<i>a</i> = 1	a = 2			
CV.wts	<mark>0.07</mark>	<mark>0.38</mark>	<mark>0.86</mark>	<mark>2.29</mark>			
	RelBias(%)						
$b(\boldsymbol{x}; \widehat{\boldsymbol{B}}_{W})$	0.34	0.00	0.36	1.45			
$b'(\boldsymbol{x})$	0.34	0.00	0.00	-0.36			
	EmpVar						
$b(\boldsymbol{x}; \widehat{\boldsymbol{B}}_w)$	1.94	2.18	3.08	6.95			
$b'(\boldsymbol{x})$	1.94	2.11	2.69	3.53			
	MSE						
$b(\boldsymbol{x}; \widehat{\boldsymbol{B}}_{W})$	1.94	2.18	3.08	7.07			
$b'(\boldsymbol{x})$	1.95	2.11	2.69	3.53			

b. Quota sample on a subset of predictors, x_1 , not in x_2 and x_3

	Probability samples with PPS(MOS)						
	a = 0.1	a = 0.5	<i>a</i> = 1	a = 2			
CV.wts	0.07	0.38	0.86	2.29			
	RelBias(%)						
$b(\boldsymbol{x}; \widehat{\boldsymbol{B}}_{w})$	0.34	0.36	0.36	1.45			
$b(\boldsymbol{x}; \widehat{\boldsymbol{B}}_0)$	2.05	10.18	13.09	5.82			
$b'(\boldsymbol{x})$	0.34	0.36	0.36	0.36			
	EmpVar						
$b(\boldsymbol{x}; \widehat{\boldsymbol{B}}_w)$	2.28	2.31	2.79	8.87			
$b(\boldsymbol{x}; \widehat{\boldsymbol{B}}_0)$	2.35	2.31	2.11	4.65			
$b'(\mathbf{x})$	2.27	2.13	2.35	4.05			
	MSE						
$b(\boldsymbol{x}; \widehat{\boldsymbol{B}}_w)$	2.29	2.32	2.80	9.01			
$b(\boldsymbol{x}; \widehat{\boldsymbol{B}}_0)$	2.70	9.99	15.01	7.26			
$b'(\mathbf{x})$	2.27	2.14	2.35	4.06			

Adaptive Exchangeability

Real Data Analysis

- 1. COVID with BRFSS as reference (Kalish et al. 2021)
- 2. Unweighted NHANES with NHIS as reference (Wang et al. 2021)

Data Example I – NIH SARS-CoV-2 seroprevalence study

AIM: Proportion of U.S. adults with COVID-19 antibodies from April 01 to August 04, 2020

NIH SARS-CoV-2 seroprevalence study (Kalish et al., 2021)

- More than 460,000 volunteers responding within weeks of the study announcement
- Select subset of volunteers based on age, race, sex, ethnicity and region
- A sample of 8058 subjects answered a questionnaire on medical, geographic, demographic, and socioeconomic information and provided blood samples
- Quota Sampling Rapid data collection but suffer from Selection Bias

<u>Behavioral Risk Factor Surveillance System (BRFSS) survey (CV(wt) = 1.92)</u>

- A national representative probability survey
- Adjust for potential selection bias by 11 variables related to seropositivity but were not used in the quota sampling
- A total of 367,165 participants, responded to the same clinical questionnaire, were included in the analysis

	Covid	Weighted		Covid	Weighted		Covid	Weighted
	Survey	BRFSS		Survey	BRFSS		Survey	BRFSS
Age Group			Urban/Rural			Flu Va	ccinated	
18-45	41.6	42.9	Urban	94.7	93.2	Yes	73.8	51.3
45-70	42.6	41.8	Rural	5.3	6.8	No	26.2	48.7
70-95	15.8	15.2	Children presen	nt		Cardio	ovascular	
Sex			Yes	32.5	34.7	Yes	4.1	9.5
Male	47.4	47.8	No	67.5	65.3	No	95.9	90.5
Female	52.6	52.2	Educ3			Pulmo	onary	
Race			<=HS	2.6	39.4	Yes	18.8	18.7
White only	77.5	74.8	College	13.8	31.5	No	81.2	81.3
Black only	9.4	12.6	>=College	83.6	29.1	Immu	ne	
Others	13.1	12.5	Homeowner			Yes	23.4	31.1
Ethnicity			Own	75.2	68.8	No	76.6	68.9
Hispanic	15.9	14.1	Rent	20.2	25.6	Diabe	tes	
Not Hispanic	84.1	85.9	Others	4.7	5.6	Yes	5.5	11.9
Region			Employment			No	94.5	88.1
Northeast	16.7	17.1	Employed	71.2	57.4	Health	n Insuran	ce
Midwest	15.8	17.6	NLF	23.8	32.2	Yes	97.4	89.0
Mid-Atlantic	20.8	17.3	Unemployed	5.0	10.4	No	2.6	11.0
South/Central	14.2	15.7						
Mountain/Southwest	15.5	15.3						
West/Pacific	17.0	16.9						

Undiagnosed seropositivity rate among US adults 04/01/2020-08/04/2020

KW Matching	est (%)	se* (X10 ⁻²)
$b(\boldsymbol{x}; \widehat{\boldsymbol{B}}_{w})$	6.79	2.50
$b(\boldsymbol{x}; \widehat{\boldsymbol{B}}_0)$	4.32	0.66
$b'(\mathbf{x})$	4.31	0.67
Post-stratification		
$b(\boldsymbol{x}; \widehat{\boldsymbol{B}}_{w})$	4.56	0.83
$b(\boldsymbol{x}; \widehat{\boldsymbol{B}}_0)$	4.39	0.61
$b'(\mathbf{x})$	4.33	0.61

*: no account for the variability due to estimating B or γ

Data Example II -- NHANES III & NHIS 1994

Estimate prospective 15-year all-cause mortality for people aged 18 to
 75 in the US from 1990

• The Third National Health and Nutrition Examination Survey (NHANES) $n_c = 17,111, \quad \hat{N} = 173,481,294$ • <u>Reference Survey</u>: 1994 National Health Interview Survey (NHIS)

 $n_s = 18,138$, $\hat{N} = 178,226,524$ and CV(NHIS weights) = 0.57

Both Surveys oversample old people (>= 60 yrs), minorities, low-income

Note: The two surveys share target population, data collection mode, well-designed questionnaires, and mortality information Linked to NDI.

NHIS-weighted 15-year all-cause mortality=13.04%

Adaptive Exchangeability

Estimate of 15-year Mortality Rate (%) using unweighted NHANES

	NHIS	NHANES	$b'(\boldsymbol{x})$	$b(\boldsymbol{x}; \widehat{\boldsymbol{B}}_0)$	$b(\boldsymbol{x}; \widehat{\boldsymbol{B}}_w)$
Full Sample	13.0	17.9	13.5%	16.0	13.4%
[18,30]	2.1	2.5	2.3%	2.3	2.3%
(30,50]	6.0	7.5	5.0%	5.6	5.0%
(50,75]	34.6	41.7	35.5%	37.8	35.5%

- 23 -

	Propensity of Unweighted NHIS vs. Weighted NHIS		Logistic Regression of Outcome		
	Estimate	pvalue	Estimate	pvalue	
age_c2	0.202	0.000	1.057	0.000	
age_c3	0.230	0.000	3.071	0.000	
Sex	0.175	0.000	-0.573	0.000	
Educ6	0.051	0.000	-0.065	0.002	
race2	0.014	0.860	-0.032	0.597	
race3	-0.094	0.417	-0.554	0.000	
race4	-0.171	0.143	-0.855	0.001	
Poverty	-0.123	0.023	-0.232	0.002	
poverty3	-0.144	0.051	-0.064	0.424	
Health	-0.020	0.137	0.386	0.000	
region2	0.027	0.911	-0.040	0.624	
region3	-0.059	0.798	0.018	0.801	
region4	0.006	0.983	0.080	0.343	
Marstat	0.450	0.000	0.294	0.000	
marstat3	0.227	0.000	0.028	0.752	
smk_stat1	0.003	0.935	0.648	0.000	
smk_stat2	0.031	0.306	0.401	0.000	
fam_inc	-0.084	0.000	-0.164	0.000	
snuff_chew	0.003	0.946	0.104	0.212	
Yan Li, JPSM and EPIB, UMD	Adapti	ve Exchangeability		3/1/22	

Conclusion and Discussion

 Conditional Exchangeability (*) - balancing scores Finer than, if not equal to, the participating rate

 \circ Weighted propensity scores $b(\mathbf{x}; \widehat{\mathbf{B}}_w)$

 \circ Unweighted propensity scores $b(\mathbf{x}; \widehat{\mathbf{B}}_0)$

- Adaptive exchangeability
 - \circ Identify $b(\mathbf{x}; \widehat{\mathbf{B}}_0)$

o Identify bias correction factor $b(\mathbf{x}; \widehat{\mathbf{\gamma}}_w)$ by comparing S vs S_w ,

 $\circ \text{ Construct } b'(\boldsymbol{x}) = b(\boldsymbol{x}; \widehat{\boldsymbol{B}}_0) + \boldsymbol{b}(\boldsymbol{x}; \widehat{\boldsymbol{\gamma}}_{\boldsymbol{w}}),$

which a monotone function of $P(i \in C | x, U)$.

- 25 -

Future Area

- Other methods to satisfy adaptive exchangeability? Poststratification?
- Variables to be collected in both C and S?
- Propensity Modeling and Estimation
 - $_{\odot}$ Depends on the predictivity of propensity score model?
 - o Machine learning Methods?
- High quality reference survey required by $b(x; \hat{\gamma}_w)$ Less variable and informative weights!

High-Quality Probability Samples are still in great demand, especially for population-level descriptive estimates

THANK YOU!

REFERENCES

- Beaumont, J.-F. (2020). Are probability surveys bound to disappear for the production of official statistics? *Survey Methodology*, 46, 1-28.
- Chen, Y., Li P., and Wu C. (2020). Doubly robust inference with nonprobability survey samples. Journal of the American Statistical Association 115, 2011-2021.
- Elliott M.R. and Valliant R. (2017). Inference for nonprobability samples. *Stat. Sci.*, 32, 249-64.
- Kalish, H., Klumpp-Thomas, C., Hunsberger, etc (2021). Mapping a Pandemic: SARS-CoV-2 Seropositivity in the United States. *medRxiv:* <u>https://doi.org/10.1101/2021.01.27.21250570</u>
- Kim, J. K., S. Park, Y. Chen, and C. Wu (2018). Combining non-probability and probability survey samples through mass imputation. arXiv preprint arXiv:1812.10694.
- Lee S. and Valliant R. (2009). Estimation for volunteer panel web surveys using propensity score adjustment and calibration adjustment. *Sociological Methods & Research*, 37, 319-43.
- Rafei, A., C. A. Flannagan, and M. R. Elliott (2020). Big data for finite population inference: Applying quasi-random approaches to naturalistic driving data using Bayesian additive regression trees. Journal of Survey Statistics and Methodology 8 (1), 148-180.
- Rao, J.N.K. (2021). On Making Valid Inferences by Integrating Data from Surveys and Other Sources. *Sankhya* B, 83:242-272.

Yan Li, JPSM and EPIB, UMD

- Rivers D. (2007). Sampling for web surveys. Paper presented at the Joint Statistical Meetings, Section on Survey Research Methods. Salt Lake City, Utah.
- Rosenbaum P.R. and Rubin D.B. (1983). The central role of the propensity score in observational studies for causal effects. *Biometrika, 70*, 41-55.
- Valliant (2020). Comparing alternatives for estimation from nonprobability samples. *Journal of Survey Statistics and Methodology*, 8, 231-263.
- Wang, L., Valliant, R., and Li, Y. (2021). Adjusted Logistic Propensity Weighting Methods for Population Inference using Nonprobability Volunteer-Based Epidemiologic Cohorts. *Stat. in Med.*, <u>https://doi.org/10.1002/sim.9122</u>.
- Wang, L., Graubard, B.I., Hormuzd, A.K. and Li, Y. (2021). Efficient and Robust Propensity-Score-Based Methods for Population Inference using Epidemiologic Cohorts. *International Statistical Review* (accepted).
- Wang, W., Rothschild, D.; Goel, S.; Gelman, A. (2015). "Forecasting elections with non-representative polls" (PDF). *International Journal of Forecasting*. **31** (3): 980–991. doi:10.1016/j.ijforecast.2014.06.001.
- Yang, S., and Kim, J. K. (2020). Statistical data integration in survey sampling: A review. *Japanese Journal of Statistics and Data Science*, 1-26.
- Yang, S., Kim, J.K. and Hwang, Y. (2021). Integration of data from probability surveys and big found data for finite population inference using mass imputation. *Survey Methodology*, 47, 29-58.