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Motivation: Crowdsourcing experiments
• In 2020, Statistics Canada advertised a series of online 

questionnaires on its website

• This approach is called crowdsourcing

• 1st “crowdsourcing” sample: 200,000 participants

• Why use crowdsourcing?
• Desire to have timely and inexpensive information (e.g. 

pandemic)

• Why being careful with crowdsourcing? 
• Participation bias and measurement errors 2



Overview
• Data integration scenario

• Inverse probability weighting (Chen, Li and Wu, 2020)

• Developed two extensions that account for the data structure:
• Variable selection procedure using a modified AIC (Akaike 

Information Criterion)

• nppCART: a modified CART algorithm

• Illustration using crowdsourcing data
• Disclaimer: The content of this presentation represents the authors' opinions and not 

necessarily those of Statistics Canada. 3



Data integration scenario
• Estimation of the population total:

• Non-probability sample:
• Observed: variable of interest       and auxiliary variables

• Participation indicator:

• Probability sample:
• Observed:        and a survey weight

• Missing:       and

• Assumption: No measurement errors
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Inverse probability weighting
• Model the participation probability:

• Assumption: Non-informative participation
•
• Requires powerful auxiliary variables

• Pseudo weights:

• Estimator of     :

• Pseudo weights can be calibrated to increase efficiency and 
achieve double robustness

• Alternative: Model        (e.g., statistical matching)  
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Estimation of      
• Logistic model:

• . How to estimate    ?

• Maximum Likelihood:

• Requires       to be available for

• Similar to weighting for survey nonresponse

• Chen, Li and Wu (2020):

• Pseudo ML: Requires knowing       for              and  
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Estimation of 
• Homogeneous group model:               ,

• Special case of the logistic model

• Using Chen, Li and Wu (2020), the estimated participation 
probability for unit k in group g :

• In practice, homogeneous groups are often created
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• Two main reasons:
• Robust with respect to a misspecification of the logistic model 

(Haziza and Lesage, 2016) 

• Avoids very small estimated probabilities

• How to form homogeneous groups?
• First, compute              and then create groups 

homogeneous with respect to

• Use classification trees
8
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• Choice of relevant auxiliary variables and interactions (or 
homogeneous groups) is key to reduce bias 

• Auxiliary variables are often categorical and crossing them all is 
usually not an option

• Standard procedures cannot be used:
• The pooled sample is not an i.i.d. sample
• The probability sampling design must be taken into account

• Developed two extensions of Chen, Li and Wu (2020):
• Stepwise selection procedure using a modified AIC

• nppCART: a modified CART (also based on modified AIC)
9
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Modified AIC
• AIC is a likelihood-based criterion used to select a model

• Assumption: ML estimation (             )  

• : Log likelihood

• Borrow from Lumley and Scott (2015): modified the 
classical AIC when pseudo maximum likelihood is used to 
estimate model parameters from survey data

• : Pseudo log likelihood 10
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nppCART: a modified CART
• CART creates homogeneous groups (Breiman et al., 1984)

• Implicitly and automatically select relevant auxiliary variables 
and interactions

• Does not account for the data structure and probability 
sampling design

• Growing step:
• CART: Recursively split the sample by minimizing an objective 

function
• Entropy distance ∝ - (log likelihood for homog. group model) 

• nppCART: Replace log likelihood by pseudo log likelihood         
(as in Chen, Li and Wu, 2020) 11



nppCART: an modified CART
• Pruning step:

• Determine a sequence of subtrees of decreasing size 

• Choose the best subtree: nppCART minimizes the modified 
AIC for the homogeneous group model 

• nppCART accounts for the probability sampling design in 
both steps

• May be used to create homogeneous groups based on
• All the auxiliary variables 

• Only one variable: 12
logisticˆ kp



Bootstrap variance estimation
• Need to account for two sources of variability: probability 

sampling design and participation model

• Two sets of bootstrap weights:

• A set of bootstrap weights that accounts for the probability 
sampling design (e.g., Rao, Wu and Yue, 1992)

• A set of bootstrap weights obtained by modelling the 
participation mechanism as Poisson sampling (Beaumont and 
Patak, 2012)

• Simplification: Treat homogeneous groups as fixed
13



Illustration
• Non-probability sample: Crowdsourcing (31,415 

participants)

• Probability sample: LFS (87,779 respondents + response 
rate around 80%)

• Auxiliary variables: education (8), region (56), age (13), 
sex (2), immigration (3), employment (3), marital (6), 
household size (6)

• Reference for comparison: CPSS (probability sample with 
4,209 respondents and response rate around 15%) 14



Methods
• Naïve (1 group)

• CLW – Main effect – Frank (100 groups)

• CLW – Stepwise – Frank (100 groups)

• CLW – Stepwise – nppCART (1,276 groups)

• nppCART – No pruning (3,165 groups)

• nppCART – Pruning (1,772 groups)
15
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Some conclusion of our experimentations
• The variable Education is by far the most important to 

explain participation

• Interactions are not strong

• All IPW methods performed similarly, especially when 
the probability sample was large

• Larger differences may be expected
• for smaller domains
• for other data sets (with stronger interactions)

• Future work: Random forests?
21
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