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Motivation: Crowdsourcing experiments

e [n 2020, Statistics Canada advertised a series of online
guestionnaires on its website

* This approach is called crowdsourcing

e 15t “crowdsourcing” sample: 200,000 participants

* Why use crowdsourcing?

* Desire to have timely and inexpensive information (e.g.
pandemic)

* Why being careful with crowdsourcing?

* Participation bias and measurement errors
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Overview

* Data integration scenario
* Inverse probability weighting (Chen, Li and Wu, 2020)

* Developed two extensions that account for the data structure:

* Variable selection procedure using a modified AIC (Akaike
Information Criterion)

* nppCART: a modified CART algorithm

* |[lustration using crowdsourcing data

* Disclaimer: The content of this presentation represents the authors' opinions and not
necessarily those of Statistics Canada. 3
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Data integration scenario

* Estimation of the population total: 6 = ZkeU Vi
* Non-probability sample: s,, < U
* Observed: variable of interest y, and auxiliary variables x,
* Participation indicator: o,
* Probability sample: s, cU
* Observed: X, and a survey weight W,
* Missing: Vi and 0,

* Assumption: No measurement errors

oo cxies g
el S e Canada




Lo
N =

Inverse probability weighting
* Model the participation probability: p, =Pr(o, = I‘Xk) >0

* Assumption: Non-informative participation
* Pr(o, = l‘xkayk) =Pr(o, = l‘xk)
* Requires powerful auxiliary variables

. ANP _ Al
* Pseudo weights: W, = p,
~ NP

* Estimator of 0 : éNP = Zkes We Vi

* Pseudo weights can be calibrated to increase efficiency and
achieve double robustness

* Alternative: Model Y, (e.g., statistical matching)
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Estimation of p,

* Logistic model: p,(a)=

[1 +exp (—x;{a)]_l

° ﬁk — Pk(&) . How to estimate a. ?

e Maximum Likelihood:

ZkesNP Xk B keU pk (a)xk - 0

* Requires X; to be available for ke U

* Similar to weighting for survey nonresponse

e Chen, Li and Wu (2020):

* Pseudo ML: Requires

I*I Statistics  Statistique
Canada Canada

Zkesz X — Zkesp Wi Pi ((I)Xk =0

knowing x, forkes,, and kes,
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Estimation of 7.

* Homogeneous group model: p, =p, , ke U,

* Special case of the logistic model

e Using Chen, Li and Wu (2020), the estimated participation
probability for unit k£ in group g :

pe=n"/N,

*In practice, homogeneous groups are often created
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Estimation of P,

* Two main reasons:

* Robust with respect to a misspecification of the logistic model
(Haziza and Lesage, 2016)

* Avoids very small estimated probabilities

* How to form homogeneous groups?

~ logistic

* First, compute p, > and then create groups

~ logistic

homogeneous with respect to p,

e Use classification trees
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Choice of auxiliary variables / groups

* Choice of relevant auxiliary variables and interactions (or
homogeneous groups) is key to reduce bias

 Auxiliary variables are often categorical and crossing them all is
usually not an option

* Standard procedures cannot be used:

* The pooled sample is not ani.i.d. sample

* The probability sampling design must be taken into account
* Developed two extensions of Chen, Li and Wu (2020):

* Stepwise selection procedure using a modified AIC 9
* nppCART: a modified CART (also based on modified AIC
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Modified AIC

e AlC is a likelihood-based criterion used to select a model

* AIC=-2l(a)+2q Assumption: ML estimation (s, =U )
* /(a) : Log likelihood

* Borrow from Lumley and Scott (2015): modified the
classical AIC when pseudo maximum likelihood is used to
estimate model parameters from survey data

modified AIC = -2/ (@) + 2q + (penalty for using s, instead of U)

« [(6) : Pseudo log likelihood "
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nppCART: a modified CART

* CART creates homogeneous groups (Breiman et al., 1984)

* Implicitly and automatically select relevant auxiliary variables
and interactions

* Does not account for the data structure and probability
sampling design
* Growing step:
* CART: Recursively split the sample by minimizing an objective
function
* Entropy distance « - (log likelihood for homog. group model)

* nppCART: Replace log likelihood by pseudo log likelihood
(as in Chen, Li and Wu, 2020) 11
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nppCART: an modified CART

* Pruning step:

* Determine a sequence of subtrees of decreasing size

* Choose the best subtree: nppCART minimizes the modified
AlIC for the homogeneous group model

* nppCART accounts for the probability sampling design in
both steps

* May be used to create homogeneous groups based on

* All the auxiliary variables

~ logistic

* Only one variable: p; 12
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Bootstrap variance estimation

* Need to account for two sources of variability: probability
sampling design and participation model

* Two sets of bootstrap weights:

* A set of bootstrap weights that accounts for the probability
sampling design (e.g., Rao, Wu and Yue, 1992)

* A set of bootstrap weights obtained by modelling the
participation mechanism as Poisson sampling (Beaumont and
Patak, 2012)

e Simplification: Treat homogeneous groups as fixed .
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Illustration

* Non-probability sample: Crowdsourcing (31,415
participants)

* Probability sample: LFS (87,779 respondents + response
rate around 80%)

* Auxiliary variables: education (8), region (56), age (13),
sex (2), immigration (3), employment (3), marital (6),
household size (6)

* Reference for comparison: CPSS (probability sample with
4,209 respondents and response rate around 15%) 14
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Methods

* Naive (1 group)

* CLW — Main effect — Frank (100 groups)

* CLW - Stepwise — Frank (100 groups)

* CLW - Stepwise — nppCART (1,276 groups)

* nppCART — No pruning (3,165 groups)

15
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Proportion of people who worked most of their
hours at home during the reference week

50

45

40
W Naive

B CLW - Main effect - Frank

B CLW - Stepwise - Frank 0 I
M CLW - Stepwise - nppCART 25
B nppCART - No pruning X
nppCART - Pruning
m CPSS '
1
0

35

o

(6]

o

(6]

17

L
Statistics ~ Statistique C d
Canada Canada a,na, a




Proportion of people who “fear being a target for
putting others at risk” because they do not always
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Probability sample: CPSS
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Probability sample: CPSS
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Some conclusion of our experimentations

* The variable Education is by far the most important to
explain participation

* |Interactions are not strong

* All IPW methods performed similarly, especially when
the probability sample was large

* Larger differences may be expected
* for smaller domains

e for other data sets (with stronger interactions) 01

* Future work: Random forests?
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