

Reference Week Adjustment for Employment Insurance Statistics

November 20, 2019

Lorcan Mischler

Delivering insight through data for a better Canada

Agenda

- Overview of Employment Statistics Program
- Reference Week
- Issues Encountered During Seasonal Adjustment (SA)
- Solution 1: Modelling
- Solution 2: Alternative Data Source

Overview of El Statistics Program

- El Statistics Program:
 - Monthly estimates
 - Statistics on number of EI beneficiaries, number of claims, type of benefits, number of disqualifications and disentitlements.
 - Uses administrative data: administered by Service Canada on behalf of Employment and Social Development Canada
 - Data seasonally adjusted (X-12-ARIMA)

- Reference Week (RW): The week containing the 15th day of the month
- Number of beneficiaries obtained by counting number of people who qualified for EI benefits during the reference week (whether or not they have received benefits for other weeks)
- Reference week introduces a calendar effect due to location of the 15th day.
- Impacts month-to-month change in the EI statistical estimates.

MONTH						
SUN	MON	TUE	WED	THU	FRI	SAT
			1	2	3	4
5	6	7	8	9	10	11
12	13	14	15	16	17	18
19	20	21	22	23	24	25
26	27	28	29	30	31	

- Prior to 2017: beneficiaries wait 2 weeks before receiving EI benefits.
- Adjustment is made relative to where the 15th falls compared to Wednesday; done via a linear regARIMA model:

$$y_t = \sum_i \beta_i x_{it} + z_t, \qquad z_t \sim ARIMA$$

- where:
 - y_t is the dependent time series
 - x_{it} are the regression variables depending on time t
 - β_i are the regression parameters
 - \mathbf{z}_t are the regression residuals

Positive adjustment

	MONTH					
SUN	MON	TUE	WED	THU	FRI	SAT
	1	2	3	4	5	6
7	8	9	10	11	12	13
14	15	16	17	18	19	20
21	22	23	24	25	26	27
28	29	30	31			

Negative adjustment

MONTH						
SUN	MON	TUE	WED	THU	FRI	SAT
						1
2	3	4	5	6	7	8
9	10	11	12	13	14	15
16	17	18	19	20	21	22
23	24	25	26	27	28	29
30	31					

$$x_{it} = +2$$

$$x_{it} = \delta_{it} - 15$$

where δ_{it} is Wednesday's date during RW

$$x_{it} = -3$$

As of 2017: new legislation changed the waiting period to one week.

Before 2017: 2 week waiting period

As of 2017:
1 week waiting period

■ This introduced a problem for the reference week adjustment we were using.

- Most beneficiaries would request EI benefits at end of month:
 - Before 2017: Waiting period often intersects reference week
 - After 2017: Waiting period rarely intersects reference week (big impact on Health and Education sectors)

- As of 2017, reference week adjustment did not seem necessary
- Keeping the linear reference week adjustment: spikes in the data would be introduced post-2017.
- Removing the reference week adjustment: spikes introduced in pre-2017 data.
- Obviously, the linear regressor was not working as we wanted.
- Had to think of a new solution to take care of this problem.

Solution 1: Use Various Non-Linear Models

• Here, we tried various non-linear models and compared to linear model:

$$f(x_{it}) = \sqrt[3]{x_{it}}$$

$$f(x_{it}) = \exp(x_{it})$$

$$f(x_{it}) = x_{it}^2$$

$$f(x_{it}) = x_{it}^2 + x_{it}$$

$$f(x_{it}) = \expit(x_{it})$$

$$\operatorname{expit}(x_{it}) = \operatorname{logit}^{-1}(x_{it}) = \operatorname{log}^{-1}\left(\frac{x_{it}}{1 - x_{it}}\right) = \frac{\exp(x_{it})}{\exp(x_{it}) + 1}$$

■ 1341 series: 6 models, 12 months \rightarrow 96,552 results

Looking at the best model fit for each month based on R²_{adj}, AIC, BIC (16,092 models)

R² adj

% Model Frequency 5.56 Linear Cube root 21.11 Exponential 11.38 37.61 Quadratic Quadratic with 17.83 linear term Expit 6.50 AIC

Model	% Frequency		
Linear	6.05		
Cube root	22.20		
Exponential	12.93		
Quadratic	42.09		
Quadratic with linear term	9.57		
Expit	7.16		

BIC

Model	% Frequency
Linear	6.33
Cube root	23.01
Exponential	13.97
Quadratic	44.44
Quadratic with linear term	4.72
Expit	7.53

Solution 1: Use Various Non-Linear Models

Beneficiaries, Manitoba, Education: Expit model for September

Solution 2: Use Detailed Data

- Pretend beneficiaires prior to 2017 had one-week waiting period (we know the date when people applied for EI)
- Since reference week adjustment works well for up to end of 2016, we would do seasonal adjustment in 2 parts:
 - Prior to 2017: use the linear regARIMA model
 - Use the information from the detailed data where we pretend we have a 1-week period up to end of 2016, and use the actual data in 2017 onward.
 - Results are better and results in smoother graphs with no spikes.

Solution 2: Use Detailed Data

13

Solution 2: Use Detailed Data

Beneficiaries, Manitoba, Education (hybrid approach; in production)

Conclusion

- Discontinuity and spike in our data gave us issues in seasonal adjustment.
- 2 solutions considered: modelling and alternative data source.
 - The hybrid model we chose in the end removed spikes and worked well.
- Maintain the linear models for now
 - There may be potential for considering the other models (perhaps quadratic) and may leave the door open to other models when we get more data.

Questions?

Contact: Lorcan Mischler

lorcan.mischler@canada.ca

