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Disclaimer

These slides are released to inform interested parties of research and to
encourage discussion. The views expressed on statistical issues are those of
the author and not necessarily those of the U.S. Census Bureau.
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Background on Seasonality

Seasonality in Official Time Series. Many official time series – such
as gross domestic product (GDP) and unemployment rate data – have an
enormous impact on public policy, and the seasonal patterns often obscure
the long-run and mid-range dynamics.

What is Seasonality? Persistency in a time series over seasonal periods
that is not explainable by intervening time periods.

• Requires persistence year to year

• Non-seasonal trending series have persistence, which comes through
intervening seasons – we must screen out such cases



Background on Seasonality

The Seasonal Adjustment Task. Given a raw time series:

1. Does it have seasonality? If so, seasonally adjust.

2. Does the seasonal adjustment have seasonality? If not, publish.

Both these tasks require a seasonality diagnostic, although the properties of
a time series before and after seasonal adjustment can be quite different.



Background on Seasonality

Pre-Testing. Testing for seasonality in a raw series, where the seasonality
could be deterministic (stable), moving and stationary (dynamic), or moving
and non-stationary (unit root). These categories are not mutually exclusive,
e.g., we could have both unit root and deterministic seasonality.

Post-Testing. Testing for seasonality in a seasonally adjusted series, where
the seasonality typically will only be dynamic. However, forecast-extension
used in filtering introduces local non-stationarity to the beginning and end
of the series.



Criteria for a Diagnostic of Seasonality

1. Rigorous statistical theory

2. Precise correspondence between seasonal dynamics and the diagnostic

3. Applicable to diverse sampling frequencies

4. Applicable to multiple frequencies of seasonal phenomena

5. Ability to assess over- and under-adjustment



Criteria for a Diagnostic of Seasonality

Correspondence. Diagnostic takes on a high value if and only if a high
degree of seasonality is present (at a frequency of interest). We don’t want
high values occuring when seasonality is not present (spurious flagging of
seasonality), or low values when seasonality is present (failure to detect).

Qs. A diagnostic is based on autocorrelation at seasonal lags. These can
take on high values for a non-seasonal AR(1) process, generating spurious
indications of seasonality.



Criteria for a Diagnostic of Seasonality

Daily Time Series. A non-standard sampling frequency for official
statistics. Also, there may be weekly seasonality (frequencies 2πj/7 for
j = 1, 2, 3) – corresponding to “trading day” – and annual seasonality
(frequency 2π/365.25 and integer multiples).

Autocorrelations. Only available at integer lags, hence not helpful for
fractional periods like 365.25.



Criteria for a Diagnostic of Seasonality

Over- and Under-Adjustment. Too much seasonality removed (over-)
versus too little (under-), described by Nerlove (1964) and others.

• Over-adjustment generates dips in the spectral density, corresponding to
oscillatory effects in the inverse autocorrelations.

• Under-adjustment leaves peaks in the spectral density, corresponding to
oscillatory effects in the autocorrelations.



Persistent Oscillations

Main Contribution. Associate persistence in a stationary time series to
the presence of strong roots in its autoregressive polynomial.

1. Distribution theory for ARMA processes

2. High values of ρ (persistence) correspond to oscillatory effects in the
Wold coefficients, and hence the autocorrelations

3. Adapts to any sampling or seasonal frequency (non-integer periods are
fine)

4. Over-adjustment assessed through presence of strong roots in the moving
average polynomial



Persistent Oscillations

The AR(∞) representation of a stationary process {Xt} is

π(B)Xt = εt ∼WN(0, σ2),

and there are oscillatory effects of frequency ω and persistence ρ if

π(ρ−1eiω) = 0. (1)

So a ρ-persistent seasonal effect is present if (1) holds and ω = πj/s for
some 1 ≤ j ≤ s/2 (the seasonal frequencies).



Persistent Oscillations

Estimate π(B) via fitting an ARMA model (or an AR model, using OLS),
and test statistic based on sample size T is

T |π̂(ρ−1eiω)|2,

which has known asymptotic distribution (a squared Gaussian) under null
hypothesis (1).

Testing: large values reject presence of seasonality of persistence ρ. BUT: a
greater or lesser persistence of seasonality could still be present, so we should
test across many values of ρ. We consider testing over all ρ ∈ [.98, 1), with
rejection indicating no seasonality of any persistency in this range.



Anti-Persistent Oscillations

The MA(∞) representation of a stationary process {Xt} is

Xt = ψ(B)εt ∼WN(0, σ2),

and there are oscillatory effects of frequency ω and anti-persistence ρ if

ψ(ρ−1eiω) = 0. (2)

A ρ-persistent anti-seasonal effect is present if (2) holds and ω = πj/s for
some 1 ≤ j ≤ s/2 (the seasonal frequencies).



Anti-Persistent Oscillations

Estimate f(z) =
∑
|h|≤q γh z

h with z = ρ−1eiω for some q by using sample
autocovariances. The test statistic based on sample size T is

T |f̂(ρ−1eiω)|
2
,

which has known asymptotic distribution (a squared Gaussian) under null
hypothesis (2).

Testing: large values reject presence of anti-seasonality of persistence
ρ. We consider testing over all ρ ∈ [.98, 1), with rejection indicating no
anti-seasonality of any persistency in this range.



Seasonality Hypothesis Testing

ARMA Summary. So for an invertible ARMA process with ψ(z) =
θ(z)/φ(z) and π(z) = φ(z)/θ(z), the AR roots govern oscillations in {ψj}
and autocorrelations, whereas the MA roots govern oscillations in {πj} and
the inverse autocorrelations.

Implementation Notes.

• May be easier to fit a high order AR model (sieve approach) using OLS

• Identify AR order using BIC (we found that AIC leads to mis-sized
results)

• Use estimated parameters to obtain null limit distribution



Seasonality Hypothesis Testing

Testing Procedure. Focus on post-test (for seasonally adjusted data):

1. Remove the first and last few years of data, so as to remove local
non-stationarity

2. Fit an invertible ARIMA model, and obtain the AR(∞) representation of
the differenced process as π(z) = φ(z)/θ(z)

3. For any given ω, test H0(ρ) for all ρ ∈ (0, 1) at level α

4. Obtain interval C(α) consisting of all ρ for which we failed to reject



Seasonality Hypothesis Testing

Is it Seasonal? An interval C(α) is obtained for each ω of interest.
Seasonality exists if for at least one ω corresponding to a seasonal frequency,
an interval contains ρ = .98 (this value is suggested by other studies, but
can be modified if desired).



Simulation Evidence

Simulated Processes. We study Gaussian time series generated from

(1− φB) (1− 2ρ cos(π/6)B + ρB2)Xt ∼WN(0, σ2). (3)

The autocovariance function and spectrum are plotted in Figure 1, where we
have set φ = .8 and ρ = .9, and σ = 1. From the plots, it is apparent that
the moderate seasonality (ρ = .9) is somewhat attenuated by the transient
effect (φ = .8), so the impact of the atomic seasonality is weaker than it
would be if φ = 0.

Second Example. Lower the seasonal persistency to ρ = .8, and dampen
the transient component by setting φ = .3, displayed in Figure 2.



Simulation Evidence
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Figure 1: Autocorrelation function (left panel) and spectral density (right
panel) for AR(3) process (φ = .8, ρ = .9).



Simulation Evidence
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Figure 2: Autocorrelation function (left panel) and spectral density (right
panel) for AR(3) process (φ = .3, ρ = .8).



Simulation Evidence

Simulations. Both processes generated with sample size T = 12n and
n = 5, 10, 15, 20. We take null with ω = π/6 and either ρ = .9, .8, with
either p = 3 is known or selected via BIC.

• Size: ρ = .9 for first process (Table 1) or ρ = .8 for second process
(Table 2)

• Power: ρ = .8 for first process (Table 3) or ρ = .9 for second process
(Table 4)



Simulation Evidence

α 5 years 10 years 15 years 20 years

.10 .149 .116 .113 .101

.05 .092 .067 .061 .054

.01 .039 .026 .021 .018

.10 .139 .116 .108 .109

.05 .080 .061 .057 .056

.01 .027 .014 .013 .012

Table 1: Size simulations from an AR(3) DGP (corresponding to Figure 1)
based on a null hypothesis of .9-persistent seasonality at frequency π/6.
Results are for known AR order (first three rows) and unknown AR order
(last three rows).



Simulation Evidence

α 5 years 10 years 15 years 20 years

.10 .135 .115 .109 .104

.05 .077 .058 .057 .053

.01 .021 .012 .013 .011

.10 .132 .113 .108 .107

.05 .073 .059 .053 .054

.01 .020 .014 .009 .012

Table 2: Size simulations from an AR(3) DGP (corresponding to Figure 2)
based on a null hypothesis of .8-persistent seasonality at frequency π/6.
Results are for known AR order (first three rows) and unknown AR order
(last three rows).



Simulation Evidence

α 5 years 10 years 15 years 20 years

.10 .832 .937 .983 .994

.05 .757 .907 .970 .989

.01 .564 .805 .923 .971

.10 .477 .700 .856 .930

.05 .336 .566 .755 .872

.01 .111 .277 .484 .665

Table 3: Power simulations from an AR(3) DGP (corresponding to Figure 1)
with null hypothesis of .8-persistent seasonality at frequency π/6. Results
are for known AR order (first three rows) and unknown AR order (last three
rows).



Simulation Evidence

α 5 years 10 years 15 years 20 years

.10 .116 .205 .341 .473

.05 .060 .110 .203 .313

.01 .015 .028 .057 .096

.10 .281 .498 .682 .812

.05 .175 .362 .550 .702

.01 .051 .148 .294 .448

Table 4: Power simulations from an AR(3) DGP (corresponding to Figure 2)
with null hypothesis of .9-persistent seasonality at frequency π/6. Results
are for known AR order (first three rows) and unknown AR order (last three
rows).



Simulation Evidence

Summary.

• Size is adequate for 10 years of data when p is known or estimated, with
coverage being similar for both cases

• Power was good in the case of the first process, though greatly reduced
if the model order was unknown

• Power is much lower with second process, although somewhat greater
when the model order was unknown



NZ immigration
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Figure 3: Log of six New Zealand immigration series (9-1-1997 through
7-31-2012), showing trend, seasonal, and weekly effects.



NZ immigration

We apply the seasonality diagnostics to the differenced logged data for
frequencies ω = 2πj/7 for 1 ≤ j ≤ 3 and ω = 2π/365.25. An AR(p̂) model
is fitted with p̂ selected by AIC (see Table 5), along with the identified
intervals for ρ (all values between .5 and 1 such that the p-value exceeds
.01).

We find that high order AR processes are needed (due to the autocorrelation
present at an annual period), and that strong seasonality is present at both
annual and weekly frequencies for all six series (with the exception of the
first weekly seasonal for the VisDep series) .



NZ immigration

Series p̂ 2π/365.25 2π/7 4π/7 6π/7

NZArr 447 {1} {1} [.998, 1] [.998, 1]
NZDep 405 {1} {1} [.998, 1] [.998, 1]
VisArr 391 {1} {1} [.997, .999] [.999, 1]
VisDep 404 {1} ∅ [.999, 1] [.999, 1]
PLTArr 391 [.999, 1] {1} [.999, 1] [.999, 1]
PLTDep 398 [.999, 1] [.999, 1] [.999, 1] [.999, 1]

Table 5: Intervals for ρ, such that the corresponding null hypothesis is not
rejected at a 1% level. Rows correspond to each of the six component
series.



Census Data

We examined a collection of 233 monthly time series published by the U.S.
Census Bureau:

• 65 time series of Retail Trade and Food Services (MRTS)

• 22 time series of Wholesale Trade: Sales and Inventories (MWTS)

• 4 time series of Manufacturers’ Shipments, Inventories, and Orders (M3)

• 87 time series of Manufacturing and Trade Inventories and Sales (MTIS)

• 55 time series of New Residential Construction (RES)



Census Data

All are monthly with a start date of January 1992 or later, and with end
date of September 2019. A variety of features are present in these series:
varying degrees of persistence and evolution in seasonal patterns; presence
of outliers and calendrical effects; varying degrees of aggregation.

We extract seasonal adjustments and irregular components by application of
the software X-13ARIMA-SEATS, using either the X11 option or the SEATS
option. Then we apply the Qs statistic as well as the Root diagnostic for
under-adjustment and over-adjustment. For the latter two diagnostics, we
set the values of ρ between .98 and 1. We tally for each of the five batches
of series the incidences of adequacy, presented in Tables 6 and 7.



Census Data

X11 Test MRTS MWTS M3 MTIS RES

SA Qs 63 22 86 4 53
SA Under 64 22 87 4 55
SA Over 3 2 4 1 1

Irr Qs 63 22 86 4 55
Irr Under 64 22 87 4 55
Irr Over 4 0 4 0 1

Total 65 22 87 4 55

Table 6: Number of series seasonally adjusted by X11 that are deemed
to be adequate, according to whether the Qs test, the Root test of
under-adjustment, or the Root test for over-adjustment is applied, for either
the Seasonally Adjusted (SA) component or the Irregular (Irr).



Census Data

SEATS Test MRTS MWTS MTIS M3 RES

SA Qs 64 22 85 4 52
SA Under 65 22 87 4 55
SA Over 3 1 2 0 2

Irr Qs 65 22 86 4 55
Irr Under 65 22 87 4 55
Irr Over 6 1 2 0 2

Total 65 22 87 4 55

Table 7: Number of series seasonally adjusted by SEATS that are deemed
to be adequate, according to whether the Qs test, the Root test of
under-adjustment, or the Root test for over-adjustment is applied, for either
the Seasonally Adjusted (SA) component or the Irregular (Irr).



Conclusion

• A new paradigm for assessing cyclicality and seasonality is introduced,
where oscillations in the Wold coefficients (and autocorrelations) are
measured through AR root magnitudes

• This concept addresses several of the criteria set forth, and is
demonstrated in simulation to be promising as a test of residual
seasonality

• Further work: need theory for case of unit-root AR polynomials, to allow
for testing raw data for seasonality

Email: tucker.s.mcelroy@census.gov


