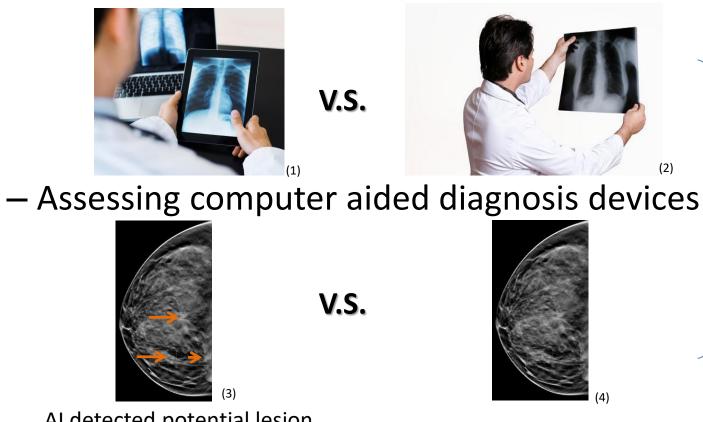


R Data Packages of Multi-Reader Multi-Case Studies and Simulation Tools to Support the Development of Reader Performance Evaluation Methods

Si Wen, Qi Gong, Brandon Gallas FDA/CDRH/OSEL Division of Imaging, Diagnostics, and Software Reliability


Outline

- MRMC studies and analysis
 - Multi-reader, Multi-case
- ROC: Receiver Operating Characteristic curves
- R Data packages
 - What and how
- Show examples of MRMC data analysis
- Why
 - Disseminate our research data, methods, and tools
 - Enables other investigators to develop methods and tools

Background

- Medical device evaluation
 - Assessing new device performance

Comparing two modalities in a medical task

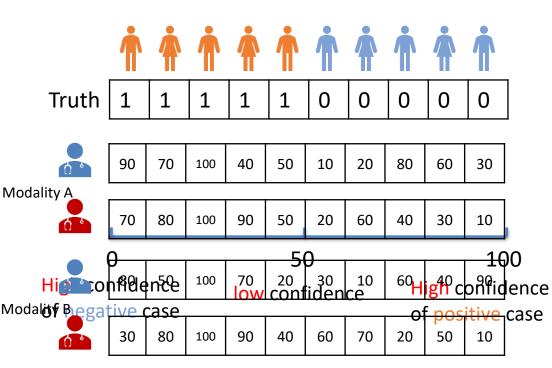
AI detected potential lesion

Image source: (1) <u>https://www.independentimaging.com/digital-x-rays-vs-traditional-x-rays/</u> (2) <u>https://www.featurepics.com/online/Doctor-Holding-Ray-Picture298823.aspx</u> (3)(4) Morra, Lia, et al. "Breast cancer: computer-aided detection with digital breast tomosynthesis." *Radiology* 277.1 (2015): 56-63. <u>https://www.ncbi.nlm.nih.gov/pubmed/25961633</u>

Motivation

- Design a study to compare two modalities for a medical task
 - Ask clinicians to review cases under the two different modalities
- Random factors in the study:
 - Cases: randomly select samples from intended case population
 - Readers: randomly select samples from intended reader population

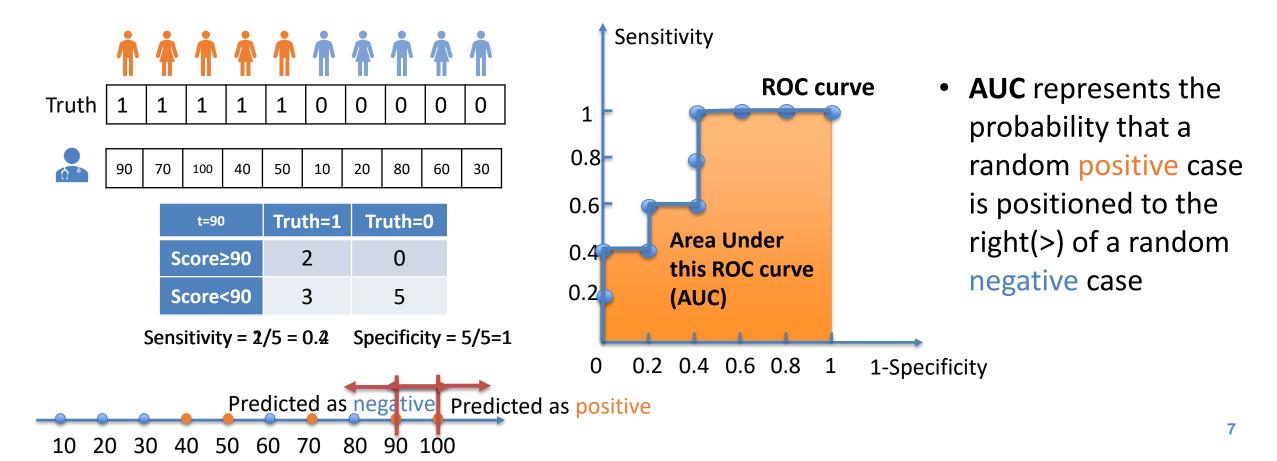
- Multi-Reader Multi-Case (MRMC) Study
 - Each case is reviewed by multiple clinicians/readers
 - Each reader review multiple cases
- MRMC analysis
 - Account for reader and case variability
 - Generalize results to the population of readers and cases



- Application
 - Comparing manual scores from clinicians by using different medical device
 - Comparing machine learning algorithm result with manual scores
 - Comparing the results from different machine learning algorithms

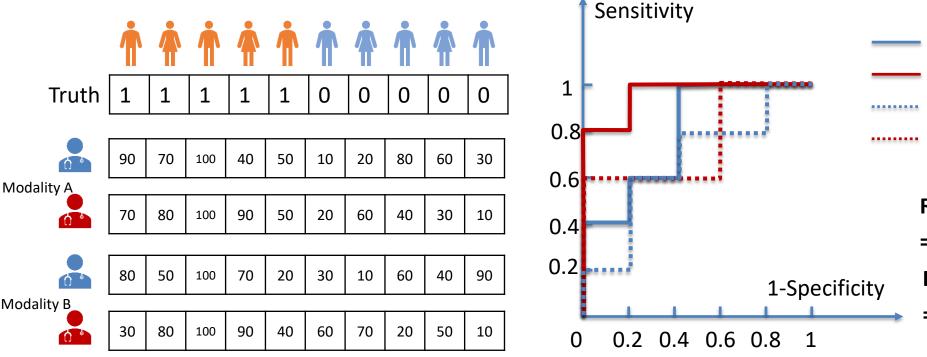
Medical Imaging and other technologies

• Data Structure



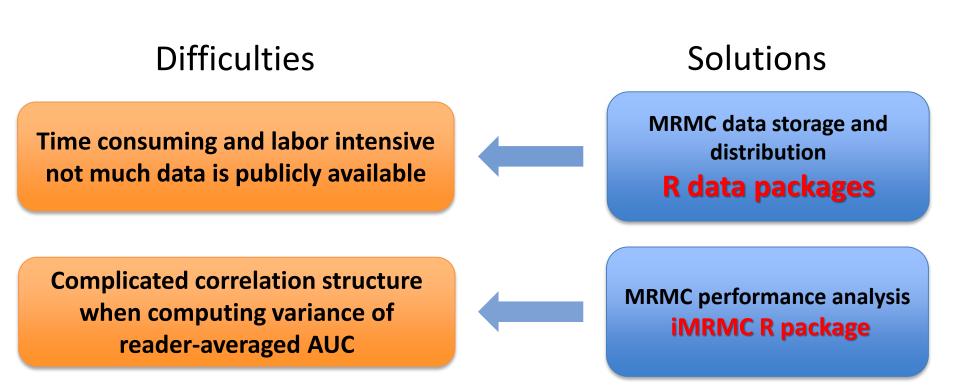
	Reader study result					Ground truth		
	readerID	caselD	modalityID	confidenceScore		caseID	Truth	
	reader1	case1	A	90		case1	1	
	reader1	case2	А	70		Casel	Ŧ	
	reader1	case3	А	100		case2	1	
	•	:	:	:		case3	1	
	reader2	case1	А	70			1	
	reader2	case2	А	80		case4	1	
	reader2	case3	А	100		case5	1	
	•	:	:	:		case6	0	
	reader1	case1	В	80			0	
	reader1	case2	В	50		case7	0	
2	reader1	case3	В	100		case8	0	
-	•	:	•	:		case9	0	
	reader2	case7	В	70			-	
	reader2	case8	В	20		case10	0	
	reader2	case9	В	50				
	reader2	case10	В	10				

caseID	Truth
case1	1
case2	1
case3	1
case4	1
case5	1
case6	0
case7	0
case8	0
case9	0
case10	0



• Receiver Operating Characteristic (ROC) analysis

• MRMC ROC analysis for two modalities

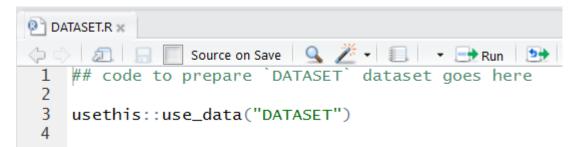

reader1 in Modality A: AUC = 0.80
reader2 in Modality A: AUC = 0.96
reader1 in Modality B: AUC = 0.68
reader2 in Modality B: AUC = 0.76

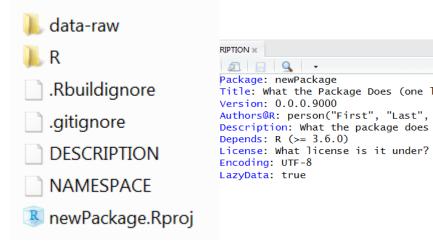
Reader-averaged AUC in modality A = $\frac{1}{2}(0.80 + 0.96)=0.88$ Reader-averaged AUC in modality B

$$\frac{1}{2}(0.68 + 0.76) = 0.72$$

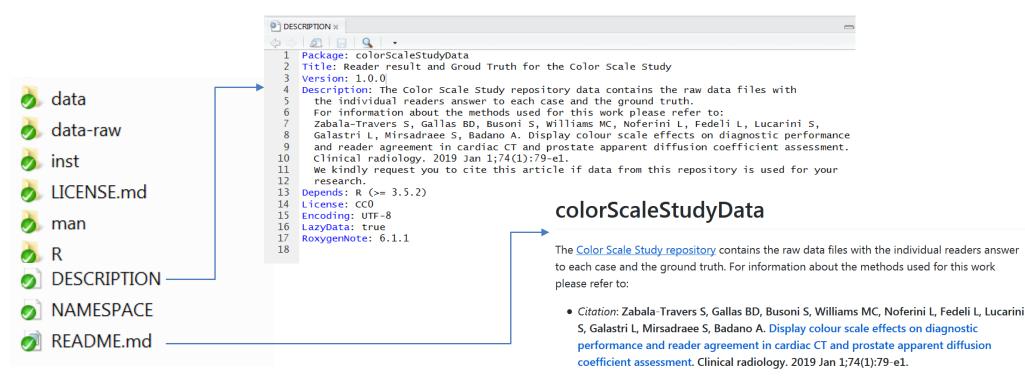
- Difference of reader-averaged AUC = 0.88 0.72 = 0.16
- Variance of difference of reader-averaged AUC hard

R data package for MRMC study



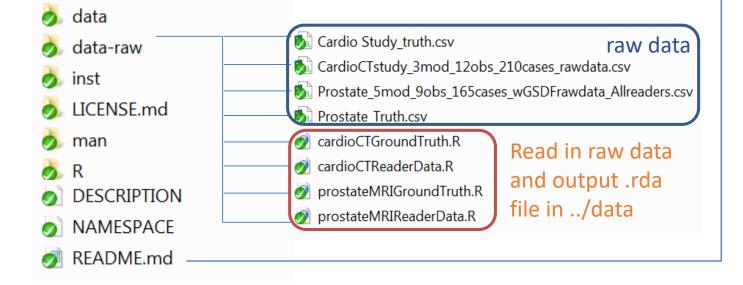

- To store and **distribute** data along with its **documentation**
 - Well-organized documentation: description, format, source, etc.
 - Public available: CRAN(The Comprehensive R Archive Network <u>https://cran.r-project.org/</u>) or GitHub (<u>https://github.com/</u>)
- To provide **use case** for existing and future functions/methods
 - Pre-processed reproducible data that can be easily accessed in R
- To help establishing **future studies**
 - Acting as a baseline for similar study
 - Providing information for sizing future study in this area

- Tool: devtools (<u>https://www.rstudio.com/products/rpackages/devtools/</u>)
- Steps:
 - devtools::create() create the package skeleton
 - devtools::use_data_raw() create data-raw/



– Put data preprocessing script into .R file, which reads in raw data and at calls usethis::use_data() to save .rda formatted data files in data/

– colorScaleStudyData (<u>https://github.com/DIDSR/colorScaleStudyData</u>)



Please cite this article if data from this repository is used for your research.

- **Description** (required as a R package) contains the package name, title, and description
- **Readm.md** (for GitHub) contains the instruction information of the package

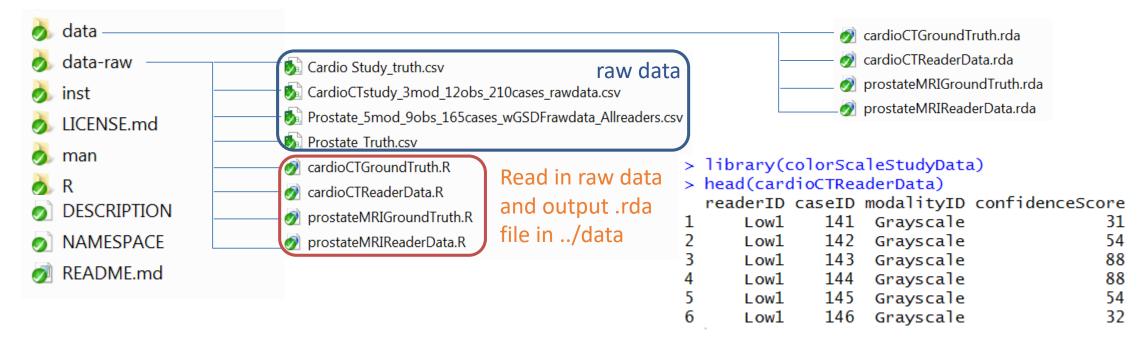
- Structure
 - colorScaleStudyData

(https://github.com/DIDSR/colorScaleStudyData)

_ト Study Design

Data is divided in 4 files. Two files for the study with Cardiac CT images and 2 files for the **Prostate MRI images**.

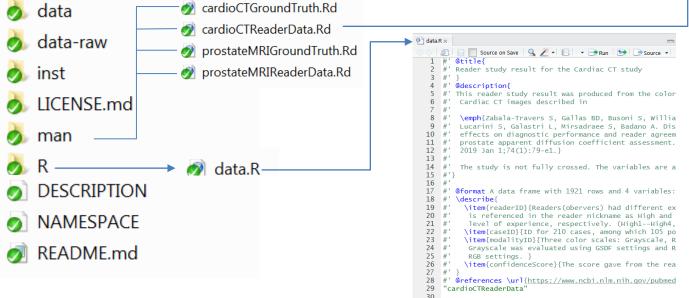
1. Cardiac CT study


- 3 modalities color scales: Grayscale, Rainbow, Hotiron.
- **12 readers (observers)** Readers had different experience level, which is referenced in the reader nickname as High and Low, for high and low level of experience, respectively.
- 210 cases 105 positive for lesion.
- Study was not fully crossed. There were three groups of readers, and each group read 35 positive and 35 negative cases.

2. Prostate MRI study

- 5 modalities color scales: Grayscale, Rainbow, Hotiron, Rainbow read with GSDF, Hotiron read with GSDF.
- 9 readers (observers) Readers had different experience level, which is referenced in the reader nickname as High, Med and Low, for high, medium and low level of experience, respectively.
- 165 cases 66 positive for lesion.
- Study was not fully crossed. There were three groups of readers, and each group read 22 positive and 22 negative cases.
- Data-raw contains the raw dataset and functions to output the R format data

- Structure
 - colorScaleStudyData (<u>https://github.com/DIDSR/colorScaleStudyData</u>)


• Data contains the R format dataset can be read in R easily

31 #' @title{

32 #' Ground Truth for the Cardiac CT study

- Documentation
 - colorScaleStudyData (<u>https://github.com/DIDSR/colorScaleStudyData</u>)

- The documentation is edited in the data.R file in R
- devtools::document() generate .Rd manuals in **man**

cardioCTReaderData	{colorScaleStudyData}	R Documentation
Reader stud study	y result for the C	ardiac CT
Description		
This reader study resu CT images described	t was produced from the color s in	scale study for the Cardiac
ucarini S, Galastri L, diagnostic performan	las BD, Busoni S, Williams M Mirsadraee S, Badano A. Disj e and reader agreement in ca fficient assessment. Clinical n	play colour scale effects on rdiac CT and prostate
The study is not fully cr	ossed. The variables are as fol	lows:
Usage		
cardioCTReaderDa	ita	
Format		
A data frame with 192	rows and 4 variables:	
readerID		
the reader nick	ers) had different experience le name as High and Low, for high gh1—High4, Low1—Low8)	
caseID		
ID for 210 case	s, among which 105 positive fo	r lesion (1–210)
modalityID		
	les: Grayscale, Rainbow, Hotiro GSDF settings and Rainbow a	
confidenceScore		
The score gave	from the readers (0–100)	
References		

https://www.ncbi.nlm.nih.gov/pubmed/30336942

- Build the package
 - devtools:: build() build source package and generate .tar.gz file
 - No ./data-raw and .Rproj in the zip file
 - In Rstudio, you can also build your package by click Build & Reload

Environment History Build				
💽 Build & Reload 🔽 Check 🛛 👰 More 🔹				
==> Rcmd.exe INSTALLno-multiard	nwith-keep.source colorScaleStudyData			
* installing *source* package 'co ** using staged installation ** R	5i.Wen/Documents/R/win-library/3.6' orScaleStudyData'			
** data *** moving datasets to lazyload DB ** inst				
<pre>** byte-compile and prepare packag ** help</pre>	e for lazy loading			
*** installing help indices converting help for package 'co finding HTML links card cardioCTReaderData prostateMRIGroundTruth	orScaleStudyData' ioCTGroundTruth html html html done			
** testing if installed package ca	html n be loaded from temporary location n be loaded from final location eps a record of temporary installation path			

MRMC R data packages - Summary

- To store and distribute data along with its documentation
 - Structure
 - Documentation
 - How to create
- To provide use case for functions in existing and future packages
 - How to use : apply doIMRMC in iMRMC package to the data

- iMRMC package (<u>https://github.com/DIDSR/iMRMC</u>)
 - A stand-alone, precompiled Java application developed by Dr. Brandon Gallas' lab
 - To analyze and size MRMC reader studies that compare the difference AUCs from two modalities, including the U-statistics estimation of variance of the difference of reader-averaged AUC
 - iMRMC R package: an R package that utilizes the core Java application and output the R list object that contains all the analysis result.
 (https://cran.r-project.org/web/packages/iMRMC/index.html)

- iMRMC R package core functions:
 - dolMRMC:
 - Takes ROC data as a data frame and runs a MRMC analysis based on U-statistics
 - sim.gRoeMetz:
 - Simulate an MRMC data set of an ROC study comparing two modalities
 - Allow testing other new methods

We need to merge both cardioCTGroundTruth

	caseID	truth
1	1	positive
2	2	positive
3		
209	209	negative
210	210	negative

and cardioCTReaderData

	readerID	caseID	modalityID	confidenceScore
1	Low1	141	Grayscale	31
2	Low1	142	Grayscale	54
3				
1920	Low8	139	Rainbow	55
1921	Low8	140	Rainbow	65

1. Cardiac CT study

- 3 modalities color scales: Grayscale, Rainbow, Hotiron.
- 12 readers (observers) Readers had different experience level, which is referenced in the reader nickname as High and Low, for high and low level of experience, respectively.
- 210 cases 105 positive for lesion.
- Study was not fully crossed. There were three groups of readers, and each group read 35 positive and 35 negative cases.

combinedDf

	readerID	caseID	modalityID	confidenceScore
1	truth	1	truth	1
2	truth	2	truth	1
3				
2130	Low8	139	Rainbow	55
2131	Low8	140	Rainbow	65

https://github.com/DIDSR/colorScaleStudyData/blob/master/inst/extra/applyIMRMC.pdf


```
library(iMRMC)
result <- doIMRMC(data = combinedDf)</pre>
```

- AUC and variance of AUC for each modality by U-statistics method

Table 6: AUC for different modalities : Ustat

	Grayscale	Hot	Rainbow
AUC	0.5902954	0.5671724	0.5176793
variance of AUC	0.0010402	-0.0000249	0.0000338
SE of AUC	0.0322528	NaN	0.0058162

https://github.com/DIDSR/colorScaleStudyData/blob/master/inst/extra/applyIMRMC.pdf


```
library(iMRMC)
result <- doIMRMC(data = combinedDf)</pre>
```

 Difference of AUC and variance of difference of AUC for pairwise comparison of different modalities by U-statistics method

Table 8: Difference of AUC among different modalities : Ustat

	Grayscale vs. Hot	Grayscale vs. Rainbow	Hot vs. Rainbow
difference of AUC	0.0231230	0.0726161	0.0494932
variance of difference of AUC	0.0012101	0.0014347	0.0010837
SE of different of AUC	0.0347870	0.0378770	0.0329203
95% CI lower bound	-0.0450596	-0.0016227	-0.0150307
95% CI upper bound	0.0913055	0.1468550	0.1140170

https://github.com/DIDSR/colorScaleStudyData/blob/master/inst/extra/applyIMRMC.pdf

- R-markdown files
 - Demonstrate the use of functions and data
 - colorScaleStudyData (<u>https://github.com/DIDSR/colorScaleStudyData/blob/master/inst/extra</u> /applyIMRMC.Rmd)
- More package application
 - viperData R data package (<u>https://didsr.github.io/viperData/</u>)

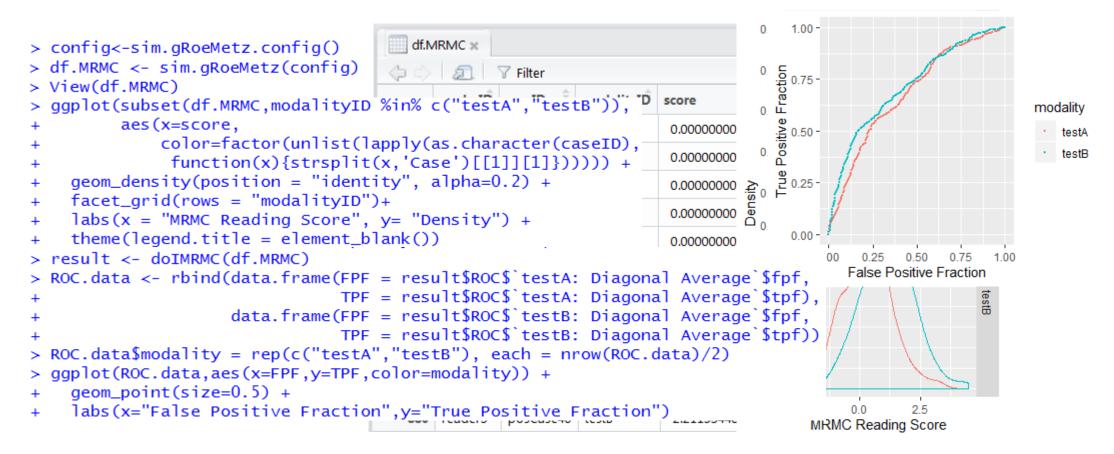
- iMRMC R package core functions:
 - dolMRMC:
 - Takes ROC data as a data frame and runs a MRMC analysis based on U-statistics

– sim.gRoeMetz:

- Simulate an MRMC data set of an ROC study comparing two modalities
- Allow testing other new methods

Simulation Tool for MRMC Data

• Roe and Metz model for MRMC ROC analysis


 $X_{ijkt}^{R\&M} = \mu_t + \tau_{it} + R_{jt} + C_{kt} + [RC]_{jkt} + [\tau R]_{ijt} + [\tau C]_{ikt} + [\tau RC]_{ijkt} + E_{ijkt}$

- where X_{ijkt} denotes the score for modality i, reader j, case k, and truth state t
- modality and truth state are fixed factors (μ_t and τ_{it} are fixed effects)
- reader and case are random factors(the remaining terms are independent zero-mean Gaussian random variables with its own variance)

Simulation Tool for MRMC Data

Apply sim.gRoeMetz to simulate MRMC data

Summary

• Multi-Reader Multi-Case (MRMC) study

- Data storage and distribution: **R data Package**
- MRMC ROC analysis: **doIMRMC in iMRMC package**
- MRMC simulation tool: **sim.gRoeMetz in iMRMC package**

Reference Links

- colorScaleStudyData R data package<u>https://github.com/DIDSR/colorScaleStudyData</u>
- viperData R data package <u>https://didsr.github.io/viperData/</u> •
- iMRMC package https://github.com/DIDSR/iMRMC ullet
- iMRMC R package https://cran.r-project.org/web/packages/iMRMC/index.html ullet
- References: •
 - Gallas, Brandon D., et al. "Impact of prevalence and case distribution in lab-based diagnostic imaging studies." *Journal of* Medical Imaging 6.1 (2019): 015501. https://www.spiedigitallibrary.org/journals/Journal-of-Medical-Imaging/volume-6/issue-1/015501/Impact-of-prevalence-and-case-distribution-in-lab-based-diagnostic/10.1117/1.JMI.6.1.015501.full
 - Gallas, Brandon D., and Stephen L. Hillis. "Generalized Roe and Metz receiver operating characteristic model: analytic link between simulated decision scores and empirical AUC variances and covariances." Journal of Medical Imaging 1.3 (2014): 031006. https://www.spiedigitallibrary.org/journals/journal-of-medical-imaging/volume-1/issue-3/031006/Generalized-Roe-and-Metz-receiver-operating-characteristic-model--analytic/10.1117/1.JMI.1.3.031006.full
 - Gallas, Brandon D., et al. "A framework for random-effects ROC analysis: biases with the bootstrap and other variance estimators." Communications in Statistics—Theory and Methods 38.15 (2009): 2586-2603. https://www.tandfonline.com/doi/abs/10.1080/03610920802610084
 - Gallas, Brandon D., et al. "Evaluating imaging and computer-aided detection and diagnosis devices at the FDA." *Academic* radiology 19.4 (2012): 463-477. https://www.sciencedirect.com/science/article/pii/S1076633211006246

Thank you! Q&A