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Disclaimer

The Findings and Conclusions in This Preliminary Presen-
tation Have Not Been Formally Disseminated by the U.S.
Department of Agriculture and Should Not Be Construed to
Represent Any Agency Determination or Policy.



Overview

I NASS interest in small area estimation (SAE)

I The Fay and Herriot (1979) model
I Case study: county estimates of planted corn, Illinois 2014

I Computation in R and JAGS
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Small Area Estimation (SAE) Literature
“A domain is regarded as ‘small’ if the domain-specific sample is
not large enough to support [survey] estimates of adequate
precision.”–Rao and Molina (2015)

Regression and mixed-modeling approaches in SAE literature

I Shrinkage–improve estimates with other information

I Utility of auxiliary data as covariate

I Variance-bias trade off

Two common models

1. Unit-level models, e.g., Battese et al. (1988)
I USDA NASS (formerly SRS) as source of data/funding

2. Area-level models, e.g., Fay and Herriot (1979)
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NASS Interest In SAE

Iwig (1996): USDA’s involvement in county estimates in 1917

Published estimates used by:

I Agricultural sector

I Financial institutions

I Research institutions

I Government and USDA

Published estimates used for:

I County loan rates

I Crop insurance

I County-level revenue
guarantee

National Academies of Sciences, Engineering, and Medicine (2017)

I Consensus estimates: Board review of survey and other data

I Currently published without measures of uncertainty

I Recommends transition to system of model-based estimates
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Fay-Herriot (Area-Level) Model
Fay and Herriot (1979)–improved upon per capita income
estimates with following model

θ̂j = θj + ej , j = 1, . . . ,m counties (1)

θj = x
′
j β + uj (2)

Adding Eqs. 1 and 2

θ̂j = x
′
j β + uj + ej

I θ̂j , direct estimate

I E (ej |θj) = 0

I V (ej |θj) = σ̂2
j , estimated

variance

I xj , known covariates

I uj , area random effect

I uj
iid∼ (0, σ2

u)
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Fay-Herriot Formulated As Bayesian Hierarchical Model
‘Recipe’ for hierarchical Bayesian model as in Cressie and Wikle
(2011)

Data model:
θ̂j |θj ,β

ind∼ N(θj , σ̂
2
j ) (3)

Process model:
θj |β, σ2

u
iid∼ N(x ′

j β, σ
2
u) (4)

Prior distributions on β and σ2
u

I Browne and Draper (2006), Gelman (2006): σ2
u ∼?

I We will specify σ2
u ∼ Unif (0, 108), β

iid∼ MVN(0, 106I )

Goal: Obtain posterior summaries about county totals, θj
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County Agricultural Production Survey (CAPS)

Case study in Cruze et al. (2016)

Illinois planted corn

I 9 Ag. Statistics Districts

I 102 counties

I a major producer of corn
I End-of-season survey

– Direct estimates of totals
– Estimated sampling variances
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Covariate x1: USDA Farm Service Agency (FSA) Acreage

I FSA administers farm
support programs

I Enrollment popular,
not compulsory

I Data self-reported at
FSA office

I Administrative vs.
physical county

https://www.fsa.usda.gov/news-room/efoia/electronic-reading-room/

frequently-requested-information/crop-acreage-data/index

https://www.fsa.usda.gov/news-room/efoia/electronic-reading-room/frequently-requested-information/crop-acreage-data/index
https://www.fsa.usda.gov/news-room/efoia/electronic-reading-room/frequently-requested-information/crop-acreage-data/index


Covariate x2: NOAA Climate Division March Precipitation

Weather as auxiliary variable

I March: Planting ‘intentions’

I April: Illinois planting

I Could rainfall in March
affect planting?

I One-to-one mapping: ASD
and climate division

I Repeat value for all counties
within ASD

ASD Precip (in)

10 1.08
20 1.35
30 1.27
40 1.66
50 1.50
60 1.36
70 1.46
80 1.69
90 2.00

Source: ftp://ftp.ncdc.noaa.gov/pub/data/cirs/climdiv
Details in Vose et al. (2014)
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NASS Official Statistics
From prior publication: Illinois 2014, 11.9 million acres of corn
planted

I Require: State-ASD-county benchmarking of estimates

State/district: https://quickstats.nass.usda.gov/results/3A17F375-B762-37BD-8C03-D581DC8F7A85
County: https://quickstats.nass.usda.gov/results/478D1A7B-E680-3E5E-95E4-9A59F938A256

https://quickstats.nass.usda.gov/results/3A17F375-B762-37BD-8C03-D581DC8F7A85
https://quickstats.nass.usda.gov/results/478D1A7B-E680-3E5E-95E4-9A59F938A256


JAGS Model

I Note data, process, prior structure from earlier slide

I Note distributions parameterized in terms of precision

I Read into R script as stored R source code or as text string
Online resources http://www.sumsar.net/blog/2013/06/three-ways-to-run-bayesian-models-in-r/

http://www.sumsar.net/blog/2013/06/three-ways-to-run-bayesian-models-in-r/


A Pseudo-Code R Script
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Analysis of JAGS Model Output
Posterior summaries of parameters–based on 3,000 saved iterates

I Posterior means, standard deviations, quantiles, potential
scale reduction factors, effective sample sizes, pD, DIC

I Transform back to acreage scale

I Ratio benchmarking–inject benchmarking factor back into
chains as in Erciulescu et al. (2018)
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Results: Models With and Without Benchmarking
I Modeled estimates (ME) may not satisfy benchmarking
I Ratio-benchmarked estimates (MERB) are consistent with

state targets and improve agreement with external sources
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Results: Posterior Distributions of ASD-Level Acreages
Used county-level inputs to produce county-level estimates

I Idea: derive ASD-level estimates from Monte Carlo iterates
I Sum corresponding draws from county posterior distributions

– Compute means and variances from aggregated chains

500 1000 1500 2000

Planted Area (1,000 Acres)

ASD 80 ASD 90

ASD 20 ASD 30

ASD 70

ASD 40

ASD 50

ASD 60

ASD 10

MERB
NASS OFFICIAL
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Results: Relative Variability of Survey Versus Model
Obtain estimates and measures of uncertainty for counties and
districts

I Recall the goal of SAE–increased precision!

CV (%) of CAPS Survey Estimates

Min Q1 Median Mean Q3 Max
County 9.1 16.6 19.2 22.2 23.5 92.3
District 4.4 5.6 6.8 6.6 7.2 8.7

CV (%) of MERB Estimates

Min Q1 Median Mean Q3 Max
County 3.6 5.6 7.2 9.0 10.5 31.2
District 1.7 2.0 2.1 2.5 2.3 4.4
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Results: Comparison to Other Sources
For counties and districts, compute ‘standard score’

I (model estimate-other source)/model standard error
I Direct Estimates, Cropland Data Layer, Battese-Fuller, FSA
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Conclusions

Discussed Bayesian formulation of Fay-Herriot model motivated by
NASS applications

Other R packages facilitate Bayesian small area estimation

I ‘BayesSAE’ by Chengchun Shi

I ‘hbsae’ by Harm Jan Boonstra

I May be bound by limited choice of prior distributions

I Transformations of data may be needed

Proc MCMC in SAS added ‘Random’ statement as of version 9.3

Thanks to Andreea Erciulescu (NISS) and Balgobin Nandram
(WPI) for three years of adventures in small area estimation!
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