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Disclaimer

This presentation is released to inform interested parties of
research and to encourage discussion. The views expressed on
statistical issues are those of the author and not necessarily those
of the U.S. Census Bureau.
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Motivation

I Recent critiques of GDP seasonal adjustment (SA): elements
of the public greatly care about quality of SA in high-profile
time series

I Agencies (including Census) are moving towards
publication/application of weekly and daily time series, which
have multiple types of seasonality present at non-integer
periods

I Seasonal heteroscedasticity invalidates current diagnostics
based upon stationarity assumptions
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Desiderata

Seasonality diagnostic wishlist:

1. Rigorous statistical theory

2. Diagnostic is necessary and sufficient to capture seasonality

3. Applicable to diverse sampling frequencies (e.g., quarterly,
monthly, weekly, daily, etc.)

4. Identifies non-integer period effects

5. Addresses over-adjustment as well as under-adjustment
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Proposed Verbal Definition

Seasonality: persistency in a time series over seasonal periods
that is not explainable by intervening time periods

Quarterly Parsing: persistency in a quarterly time series from year
to year that is not explainable by inter-quarterly dynamics
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Critique of Model-Based F Test

MB-F Scorecard:

1. Has rigorous statistical theory (though, depends upon a
parametric model)

2. Only captures deterministic (fixed) seasonality, is not effective
at detection of dynamic (time-varying) seasonality

3. Can be adapted to diverse sampling frequencies (additional
regressors)

4. Can identify non-integer periods

5. Does not assess negative seasonal lag correlation (a symptom
of over-adjustment)
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Critique of Visual Significance

VS Scorecard:

1. Has rigorous statistical theory (for the case of a tapered
spectral estimator)

2. Seasonality can be present without a peak in the spectrum
being manifested due to the superposition principle; VS is not
necessary

3. Can be adapted to diverse sampling frequencies (frequency
domain)

4. Can identify non-integer periods (frequency domain)

5. Could be adapted to detect seasonal spectral troughs (a
symptom of over-adjustment)
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Critique of Visual Significance
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Figure: Autocorrelation function (left panel) and spectral density (right
panel) for a seasonal AR(2) process
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Critique of Visual Significance
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Figure: Autocorrelation function (left panel) and spectral density (right
panel) for a seasonal AR(4) process
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Critique of QS Test

QS Scorecard:

1. Ad hoc asymptotic theory (based on simulations)

2. Diagnostic can flag non-seasonal processes as seasonal; QS is
not necessary

3. Can be adapted to diverse sampling frequencies (seasonal lags
of autocorrelations)

4. Cannot identify non-integer periods

5. Could be adapted to assess negative seasonal lag correlation
(a symptom of over-adjustment)
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Critique of QS Test

Counter-Example: a (non-seasonal) AR(1) with parameter φ has
autocorrelation function ρh = φh, which for h = s (the seasonal
period) is high if φ is large, falsely indicating seasonality according
to QS

A Fatal Simulation: with φ = .98 and s = 4 we obtain ρ4 = .92.
Consider 105 simulations of a 20-year sample of this process: the
empirical type I error rate is .975 based on the nominal of .05, i.e.,
a 97.5% chance of falsely indicating seasonality!!!
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Foundation: Understanding the Acf

QS fails: because it has left off necessity, i.e. the second part of
our definition – we need to screen out cases where seasonal lag
autocorrelation is high due mainly to intra-seasonal effects

Fixing QS: look for oscillatory patterns in the autocorrelation
function (acf), i.e., peaks at seasonal lags and lower values nearby.
We need a nice representation...

Hints from VS: spectral plots can be deceiving, but they are
based on autoregressive (AR) root structure...
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Foundation: the AR Sieve Approximation

Fact: if the spectral density

f (λ) =
∑
h∈Z

γh e
−ihλ

is positive, where γh is the autocovariance function (acvf), then f
is dense in the space of AR spectra, i.e., there exists an AR(p)
approximation for p sufficiently large
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Foundation: the AR Spectrum

Assuming the roots ζj are distinct, write

φ(z) = 1−
p∑

j=1

φj z
j =

p∏
j=1

(1− ζ−1j z)

for the AR polynomial, so that approximately (σ2 is prediction
error variance)

f (λ) = σ2 |φ(e−iλ)|−2
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Foundation: the AR Acf

By calculus of residues, for h ≥ 0

γh =
1

2π

∫ π

−π
f (λ) e ihλ dλ =

1

2π

∫ π

−π

σ2

|φ(e−iλ)|2
e ihλ dλ

=
σ2

2πi

∫
∂D

zh−1

φ(z)φ(z−1)
dz = σ2

p∑
j=1

−ζ−hj

φ(ζ−1j ) ζj ∇φ(ζj)
.

Hence the acf is

ρh =

p∑
j=1

cj ζ
−h
j =

p∑
j=1

(
φ(ζ−1j ) ζj ∇φ(ζj)

)−1
∑p

k=1

(
φ(ζ−1k ) ζk ∇φ(ζk)

)−1 ζ−hj
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Foundation: AR Roots Assess Seasonality

Polar: each root ζj has a polar decomposition:
ζ = |ζ| exp{i arg(ζ)} in terms of magnitude |ζ| and phase
arg(ζ) = arctan(=ζ/<ζ).

ζ−hj = (1/|ζj |)h exp{−i h arg(ζj)}

Summary: the acf is expressed as a linear combination of damped
exponentials ζ−hj (reciprocal modulus is damping, phase yields
periodicity of sinusoids). For roots close to unity, the coefficients
are close to maximal, and the corresponding oscillatory effects will
be evident in the acf (and acvf)
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Foundation: Extensions to Over-Adjustment

Over-adjustment: seasonal adjustment filters that smooth too
much extract non-seasonal dynamics and place them in the
seasonal, resulting in troughs in the spectrum at seasonal
frequencies
MA Roots and Inverse Autocorrelations: spectral troughs are
peaks in the reciprocal spectrum. These can be assessed through
moving average (MA) roots, using an MA sieve; the inverse
autocorrelation function (iacf) can then be decomposed in terms of
MA root magnitude and phase
Persistency and Anti-persistency: large magnitude AR roots
yield persistent dynamics (high autocorrelation at lags
corresponding to reciprocal phase), whereas large magnitude MA
roots yield anti-persistent dynamics (high inverse autocorrelation
at lags corresponding to reciprocal phase)
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Statistical Theory: AR Coefficients

If the process is stationary (we can trend-difference first), and we
estimate the AR(p) via OLS (with p selected by AIC), then

√
T (φ̂− φ)

L
=⇒ Z ∼ N (0,V )

for φ = [φ1, . . . , φp]′ and V = σ2 Γ−1p , σ2 is the prediction error
variance, and Γp is the p × p dimensional Toeplitz covariance
matrix of the process
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Statistical Theory: AR Roots

Using Rouché’s Theorem and Delta method, we obtain

A =

 <ζ̃
|ζ̃|
<[∇φ(ζ̃)]

−1
ζ̃
′

+ =ζ̃
|ζ̃|
=[∇φ(ζ̃)]

−1
ζ̃
′

<ζ̃
|ζ̃|2
=[∇φ(ζ̃)]

−1
ζ̃
′
− =ζ̃
|ζ̃|2
<[∇φ(ζ̃)]

−1
ζ̃
′


√
T
(
|ζ̂| − |ζ̃|, arg(ζ̂)− arg(ζ̃)

)
L

=⇒ AZ .

All the quantities in A can be consistently estimated by plugging in
ζ̂ for ζ̃, and φ̂ for φ
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Statistical Theory: Null Hypothesis for
Seasonality

We say that a seasonal root generates δ-seasonality if and only if
|ζ| ≤ 1 + δ, where δ ≤ .1 is suggested by numerical work. So for
some 1 ≤ j ≤ bs/2c

H0 : |ζ| = 1 + δ and arg(ζ) = ±πj/s
Ha : |ζ| > 1 + δ or arg(ζ) 6= ±πj/s

So the null states that ζ is a seasonal root that generates
δ-seasonality
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Statistical Theory: Wald Test Statistic for
Seasonality

We test this null with a Wald statistic, where we evaluate ζ0 at the
boundary null root:

S(ζ0) = T

[
|ζ̂| − |ζ0|

arg(ζ̂)− arg(ζ0)

]′ [
AV A′

]−1 [ |ζ̂| − |ζ0|
arg(ζ̂)− arg(ζ0)

]
L

=⇒ χ2
2
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Application to Furniture Retail Series:
Goals

Data: series 442 (Furniture and Home Furnishings Stores) of the
Advance Monthly Retail Trade Report, January 1992 through
December 2012

Goals: test the raw series for seasonality (δ = 0), verify seasonality
in the seasonal factors (δ = 0), and test the adjusted series
(performed by X-12-ARIMA) for residual seasonality (δ = .1)
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Application to Furniture Retail Series:
Display
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Figure: Retail series 442 (Furniture and Home Furnishings Stores), with
seasonal adjustment (grey, left panel) and seasonal factors (right panel)
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Application to Furniture Retail Series:
Analysis of Raw

Summary of results:

I Fitted an AR(p) model to the differenced logged data,
obtaining p̂ = 23

I Obtained eleven seasonal roots (of unity) and twelve
non-seasonal root. All seasonal roots fail to reject δ = 0 null,
all other roots do reject null

I Econometric bonus: roots 12 and 13 correspond to a period of
roughly 6.08 years, and likely corresponds to a business cycle
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Application to Furniture Retail Series:
Results, Part I

Raw Data X12 Seasonal Factors

arg(ζ̂)s/(2π) |ζ̂| S(ζ) p-value arg(ζ̂)s/(2π) |ζ̂| S(ζ) p-value
−4.00080 0.99902 1.0000 −4.00152 0.99912 1.0000
+4.00080 0.99902 1.0000 +4.00152 0.99912 1.0000
−2.99944 0.99999 1.0000 −2.99911 0.99976 1.0000
+2.99944 0.99999 1.00000 +2.99911 0.99976 1.0000
−5.00209 1.00023 0.50283 −5.00170 1.00030 0.6927
+5.00209 1.00023 0.50283 +5.00170 1.00030 0.6927
−1.99497 1.00359 0.52510 −1.99574 1.00174 0.56128
+1.99497 1.00359 0.52510 +1.99574 1.00174 0.56128
−0.99663 1.00527 0.51773 −0.99868 1.00174 0.77719
+0.99663 1.00527 0.51773 +0.99868 1.00174 0.77719
−6.00000 1.01213 0.58792 −6.00000 1.00580 0.6979
−0.16451 1.05488 0.00000 0.00000 1.11313 0.0000
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Application to Furniture Retail Series:
Results, Part II

Raw Data X12 Seasonal Adjustment

arg(ζ̂)s/(2π) |ζ̂| S(ζ) p-value arg(ζ̂)s/(2π) |ζ̂| S(ζ) p-value
+0.16451 1.05488 0.00000 0.00000 1.07755 0.0000
−6.00000 1.31689 0.81077 −5.43569 1.20062 0.0000
−6.00000 1.64682 0.87328 +5.43569 1.20062 0.0000
−3.45904 1.10981 0.00000 −3.49204 1.19769 0.00090
+3.45904 1.10981 0.00000 +3.49204 1.19769 0.00090
−2.29998 1.11912 0.00000 −2.28444 1.15781 0.00093
+2.29998 1.11912 0.00000 +2.28444 1.15781 0.00093
−1.20483 1.23660 0.00046 −1.21102 1.34944 0.04321
+1.20483 1.23660 0.00046 +1.21102 1.34944 0.04321
−4.59082 1.23726 0.00024 −4.22049 1.34161 0.19874
+4.59082 1.23726 0.00024 +4.22049 1.34161 0.19874
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Application to Furniture Retail Series:
Analysis of Seasonal Factors

Summary of results:

I Fitted an AR(p) model to the logged seasonal factors,
obtaining p̂ = 12

I Obtained eleven seasonal roots (of unity) and one
non-seasonal root. All seasonal roots fail to reject δ = 0 null,
the other root does reject null

I Concern: why is a non-seasonal root in there?
Over-adjustment?
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Application to Furniture Retail Series:
Analysis of Seasonal Adjustment

Summary of results:

I Fitted an AR(p) model to the differenced logged seasonal
adjustment, obtaining p̂ = 11

I Obtained eleven roots, none of which appears to have
seasonal phase

I Potential concern: one pair of roots, near to the fourth
seasonal frequency, have p-value of .199. (If we alter δ to
zero, the p-value drops to .083, hence only dynamic
seasonality is present.)

I Econometrician’s concern: where’s my business cycle!?
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Conclusions

Key Takeaways:

I AR roots can capture persistencies in the data

I AR roots form the basis of a seasonality diagnostic satisfying
five desiderata...

I Very fast and simple implementation (a few dozen lines in R,
fit with OLS)

I Extensions to seasonal heteroscedastic and multivariate time
series possible (under development)...
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Critique of AR Roots Seasonality Test

AR Roots Scorecard:

1. Has rigorous statistical theory (semi-parametric through AR
sieve)

2. Captures deterministic (fixed) seasonality (δ = 0) and
dynamic (time-varying) seasonality (δ > 0)

3. Can be adapted to diverse sampling frequencies, and handle
multiple seasonalities (e.g., weekly and annual periods in daily
data) through phase

4. Can identify non-integer periods (e.g., monthly period in daily
data) through phase

5. Can assess over-adjustment via anti-persistency test through
MA roots
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Extensions

Business cycle analysis: look for phase of AR roots corresponding
to periods between 2 and 10 years, and test with a composite null

Adequate seasonal adjustment: we can design a concurrent
filter based on a partial fraction decomposition of φ(z) into its
seasonal and non-seasonal roots, and obtain seasonal factors and
seasonal adjustments that are guaranteed to be free of under- and
over-adjustment problems

Seasonal vector form: we can embed seasonal data into an
annual vector whose components are the seasonals, and model
seasonally heteroscedastic series multivariately. Then fit Vector AR
(VAR) models, and compute AR roots from the VAR polynomial’s
determinant

32 / 33



Contact

Status: R code available for use, paper is halfway complete

Email: tucker.s.mcelroy@census.gov
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