Assessing and Improving the Accuracy of Estimators from Blended Data

Paul P. Biemer^{1,2}, Ashley Amaya¹ ¹ RTI International; ²University of North Carolina

RTI International is a registered trademark and a trade name of Research Triangle Institute.

Outline

- Hybrid estimators
- An total error framework for datasets
- An total error framework for hybrid estimators
- Types of error risks
- Error risk profiles
- Illustration of the concepts

Questions Regarding Hybrid Estimator Accuracy

- What error sources are associated with the unified dataset?
- Which of these pose the greatest *intrinsic* risks to data accuracy?
- Among the hybrid estimators that might be constructed from the unified dataset, which estimator minimizes the total error risk?
- What are the major *intrinsic* and *residual* error risks associated with the hybrid estimator?
- Which of these error risks could be further mitigated to maximally increase the accuracy of the hybrid estimator?

A Total Error Framework Can be Specified for Each Stage of the Process

In many cases it suffices to simply describe the errors in the final output

- Total error model for registers, frames and other datasets
- Total error model for survey point estimates
- Total error model for hybrid estimates
- Total error models for compilations such as the GDP and various price indexes

A Total Error Framework for a Generic Dataset

Record #	V ₁	V ₂		Vκ
		 variables o 	r features 🗕	
Ĩ				
S				
nnit				
tion				
oula				
Pop				
•				

A Total Error Framework for a Generic Dataset

Column and Cell Errors

Errors Associated with the Hybrid Estimation Process

Total Error Model for Hybrid Estimators

$$\hat{Y} - X = (\hat{Y} - Y) + (Y - X)$$

total error = $(\varepsilon_1 + L + \varepsilon_6) + \varepsilon_7$

 ε_1 = Selection error

- ε_2 = Coverage error (over-, under-, duplication)
- $\varepsilon_3 =$ Missing data error
- $\varepsilon_4 = \text{Content error}$
- $\varepsilon_5 = \text{Data processing error}$
- ε_6 = Model/estimation error
- $\varepsilon_{7} =$ Specification error

Types of Error Risks

- Intrinsic risk risk that an error source poses if no steps are taken to reduce the error; error risk of "doing nothing."
 - Example: The intrinsic risk of nonresponse bias in an linear estimator is

$$B_I = \frac{\operatorname{cov}(y_i, \rho_i)}{\overline{\rho}}$$

- Residual risk risk of error for a source that remains after mitigation strategies have been applied.
 - Example: After nonresponse weighting adjustments have been applied, the residual risk of bias is

$$B_R \leq B_I$$

Risk Profile Comparing Survey, Administrative and Unified Datasets: Either Intrinsic or Residual Risks

	Survey Dataset	Administrative	Unified Dataset
Error Sources		Dataset	
Specification	Risk level (1, 2, 3)	Risk level (1, 2, 3)	Risk level (1, 2, 3)
Coverage: Undercoverage	Risk level (1, 2, 3)	Risk level (1, 2, 3)	Risk level (1, 2, 3)
Coverage: Overcoverage	Risk level (1, 2, 3)	Risk level (1, 2, 3)	Risk level (1, 2, 3)
Coverage: Duplication	Risk level (1, 2, 3)	Risk level (1, 2, 3)	Risk level (1, 2, 3)
Selection	Risk level (1, 2, 3)	Risk level (1, 2, 3)	Risk level (1, 2, 3)
Content	Risk level (1, 2, 3)	Risk level (1, 2, 3)	Risk level (1, 2, 3)
Missing Data	Risk level (1, 2, 3)	Risk level (1, 2, 3)	Risk level (1, 2, 3)

Intrinsic Error Risk Profile Comparing Survey and Hybrid Estimates

Error Sources	Survey Estimator	Hybrid Estimator
Specification	Risk level (1, 2, 3)	Risk level (1, 2, 3)
Coverage: Undercoverage	Risk level (1, 2, 3)	Risk level (1, 2, 3)
Coverage: Overcoverage		
Coverage: Duplication	Risk level (1, 2, 3)	Risk level (1, 2, 3)
Sampling/Selection	Risk level (1, 2, 3)	Risk level (1, 2, 3)
Measurement/Content	Risk level (1, 2, 3)	Risk level (1, 2, 3)
Data Processing	Risk level (1, 2, 3)	Risk level (1, 2, 3)
Nonresponse/Missing data	Risk level (1, 2, 3)	Risk level (1, 2, 3)
Modeling/estimation	Risk level (1, 2, 3)	Risk level (1, 2, 3)

Case Study: Error Mitigation for Energy Use Survey Square Footage Data using Unified Data

- Data sources
 - Survey data: 2015 Residential Energy Consumption Survey (RECS)
 - n ≈ 2,400 completed cases
 - Big Data (data pulled from various sources)
 - Zillow
 - Acxiom
 - CoreLogic
- Variable of interest: housing unit square footage
- Goal: Integrate the external data sources with the survey data to improve and/or evaluate the accuracy of survey square footage data

Evidence of Nonsampling Error from the RECS

RECS Average Reported Square Footage

More Evidence of Intrinsic Error Risks

NR/Missing	Survey (R)	Zillow
Unit NR/missing rate	58.2%	22 0%
Item NR rate	19.2%	22.070
Overcoverage rate	11.8%	~0
Undercoverage rate	~0	15.3%
Reliability	50%	68%

Intrinsic Error Risk Profile for the RECS, Zillow and Unified Datasets

	RECS	Zillow	RECS U Zillow
Error Sources			
Specification	2	2	2
Coverage: Undercoverage	1	2	1
Coverage: Overcoverage	2	1	1
Coverage: Duplication	2	1	1
Selection	3	1	3
Content	3	3	3
Missing Data	3	2	1
Average	2.3	1.7	1.7

Intrinsic Error Risk Profile for the RECS, Zillow and Unified Datasets

	RECS	Zillow	RECS U Zillow
Error Sources			
Specification	2	2	2
Coverage: Undercoverage	1	2	1
Coverage: Overcoverage	2	1	1
Coverage: Duplication	2	1	1
Selection	3	1	3
Content	3	3	3
Missing Data	3	2	1
Average	2.3	(1.7)	(1.7)
Unified data offers no advantage to Zillow only datase			

Intrinsic Error Risk Profile RECS and RECS/Zillow Hybrid Estimates

Error Sources	RECS Estimator	RECS/Zillow Hybrid Estimator
Specification	1	2
Coverage: Undercoverage	2	1
Coverage: Overcoverage	1	1
Coverage: Duplication	2	1
Sampling/Selection	3	1
Measurement/Content	3	2
Data Processing	2	2
Nonresponse/Missing data	3	1
Modeling/estimation	3	3
Average	2.2	1.6

Initial evaluations suggest a total error reduction with the hybrid estimator even before error mitigation efforts have been fully exploited.

- Currently conducting a large scale survey to evaluate market share for it customers products about 300 markets
- Quarterly estimates tend to be unstable in some markets
- Various administrative sets have been identified that would improve estimator stability, but each brings with it other error risks that have been fully investigated

Question:

Can a hybrid estimator be constructed having greater stability than the current survey estimator without increasing total error?

Intrinsic Risk for the Hybrid Estimator Compared to Estimators Based on the Survey and Administrative Data

Quality Component	Survey	Admin Data	Hybrid Estimator
Specification	3	2	3
Coverage	2.7	2.0	2.7
Undercoverage	3	1	3
Duplication	3	3	3
Within unit	2	2	2
Selection	2.5	3	1.5
Sample size	2	N/A	1
Weight variation	3	3	2
Nonresponse/Missing	15	2	2
Data	1.5	-	-
Unit	1	3	2
Item	2	1	2
Measurement	2	3	3
Data processing	2	1	2
Keying/editing	1	1	1
Design weighting	3	N/A	3
Estimation/modeling	1	1	1
Analysis	1	3	1
Overall assessment	2.0	2.1	2.0

Summary

- A total error framework decomposes total error so that key subcomponents can be identified and addressed.
- A unified error risk framework facilitates comparisons across individual and unified data sources.
- An error risk profile can provide insights regarding the quality implications of unified datasets
 - Assesses intrinsic risks by error source
 - Helps determine whether residual risk can be reduced by data unification.

Thank you!

Please direct inquiries to:

Paul Biemer: ppb@rti.org Ashley Amaya: aamaya@rti.org