eConfidentiality

a Disclosure Avoidance Application System (Proposed)

Bei Wang

U.S. Census Bureau

April 21, 2015

Outline

- Economic Census Disclosure Avoidance
 - Economic Census Background
 - Disclosure Avoidance Research
- Current Disclosure Avoidance Programs
 - Context
 - Methods
- Future eConfidentiality

Economic Census Background

Tabulation goals

- Industry-level summaries
- Geographic Area Series

Confidentiality concerns

 We cannot "make any publication whereby the data furnished by any particular establishment or individual under this title can be identified"

Magnitude of the problem

- Large number of items
- 18 Sectors
- Approximately 1 million <u>primary suppressions</u>/persector

Primary Cell Suppression: p-percent rule

Notation

T = cell total of absolute values of company data

L = absolute value of data for largest company

S =absolute values of data for second largest company

rem = remainder = T - L - S

p = p-percent value, e.g. p=25 for 25%

- Perform primary suppression if rem < L*p/100
 - p confidential value

Primary Suppression Example

Sales		County					
		1	2	3			
	11	700	400	375	1475		
Industry	22	1000	600	450	2050		
	33	100	375	650	1125		
		1800	1375	1575	4650		

Example: Industry 11, County 1

- For p-percent rule, let p = 20
- Applying p-percent rule
 - T = 375
 - Bob's Sales = L = 250 (largest company)
 - Joe's Sales = S = 100 (second largest)
 - Arr rem = 375 250 100 = 25
 - $L*p/100 = (20 \times 250)/100 = 50$
- Since L*p/100 = 50 > rem = 25, we cannot publish this tabulation cell
 - Additional protection needed = ceil(L*p/100 rem) = 25

Complementary Suppression

Sales			County		Protection required = 25		
		ı	County				
		1	2	3			
	11	700	400	P	1500		
Industry	22	1000	600	450	2050		
	33	100	375	650	1125		
·		1800	1375	1575	4650		

2012 Economic Census Publications

- 1513 releases in total
- Disseminated on a flow basis
 - Advance report (National, 2 -3 digit NAICS)
 - Industry series (National, 2 -6 digit NAICS)
 - Geographic area series (Subnational, 2 7 digit NAICS)
 - Subjects/summary series (Differs by sector)
 - Zip codes (selected sectors)
- Challenging disclosure avoidance problem, as each new release could affect confidentiality of prior release(s)

History

1979- 1982

Census Bureau develops heuristic cell suppression methodology

Census Bureau purchases Minimal Cost Flow (MCF) optimization software from University of Texas and begins exploring more rigorous cell suppression methods

Ongoing cell suppression research with Linear Programming (LP) and Integer Programming (IP)

1990 Network (flow) program developed for 2 and 3 dimensional tables (known in-house as "Jewett programs")

Additive noise proposed as an alternative to cell suppression

- Adopted for selected economic programs
- Not pursued for the Economic Census

2010

Cell Suppression Modernization Project

2008 Established dedicated team

Methodologists - to understand and explore alternative methods

Programmers – to implement methods effectively

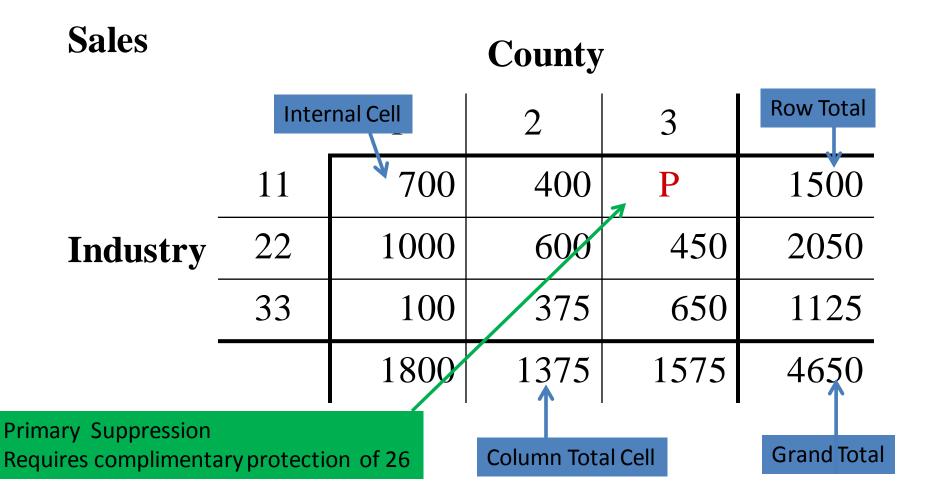
2010 Focus on documenting/understanding existing methods and

transforming FORTRAN programs to C++

2011 + Developed new Linear Programming (LP) methods

Disclosure-Avoidance Processing

- Primary suppression of a published cell total using the p-percent rule protects the largest company in the cell from calculations performed by the second-largest company.
 - Conducted <u>before</u> Cell Suppression Program (CSP)
 - Input program requires additional amount of "protection" (protection required)
- <u>Secondary</u> suppression of a published cell total prevents the use of the table's additive relationships to solve for primarysuppression cell totals – provides the *required protection*


Relationships

- Using "Sales" example
 - Row Relation R_{total} = 11 + 22 + 33
 - Column Relation $C_{total} = 1 + 2 + 3$
- Manufacturing geographic area series
 - 20658 separate geographic categories in 5222 relations example: state = $County_1 + County_2 + ... + County_n$
 - 518 (up to 6-digit) NAICS in 154 relations example: 3113 = 31131+ 31134 + 31135
 - #tables 5222x154 = 804,188

Definitions and Concepts

- Cell
- Super Cell
- m-LP
- Skipping Ps
- Trials
- Parameters
 - α , β , costscale

Definitions and Concepts: Cell

Definitions and Concepts: Cell

Cell Characteristics

- Dimension
- P/protection_required, C
- cost/value
- Capacity
- Freeze
- unpublished/publish

Super Cell

Aggregate of cells; sensitive under aggregation

Definitions & Concepts: m-LP

- m-LP (Wang JSM 2013)
 - Protects m Ps simultaneously with one LP formulation
 - Adds m-1 additional pairs of constraints to model
 - m = 1 is the standard LP process
- A successful m-LP requires "well-grouped" m Ps that is feasible and achieves as much optimality as its 1-LP counterpart or better
- Time used is a <u>fraction</u> of 1-LP (=1/m of total 1-LP)

m-LP model

minimize:
$$Y = \sum_{i=1}^{rows} \sum_{\substack{j=1 \ (i,j,k) \in A}}^{cols} \sum_{k=1}^{levs} c_{i,j,k} \left(x_{i,j,k}^{(u)} + x_{i,j,k}^{(l)} \right)$$

subject to:

(a)
$$\sum_{\substack{k=2\\(i,j,k)\in A}}^{levs} \left(x_{i,j,k}^{(u)} - x_{i,j,k}^{(l)} \right) = x_{i,j,1}^{(u)} - x_{i,j,1}^{(l)}$$

for i = 1, ..., rows, j = 1, ..., cols : levs > 1, ws(i,j,1) = 0

m pairs of (e)

(b)
$$\sum_{\substack{i=1\\(i,j,k)\in A}}^{\lim r(ii)} \left(x_{rowrel(ii,i),j,k}^{(u)} - x_{rowrel(ii,i),j,k}^{(l)} \right) = x_{rowrel(ii,0),j,k}^{(u)} - x_{rowrel(ii,0),j,k}^{(l)}$$

for $ii = 1, ..., rr, j = 1,..., cols, k = 1, ..., levs : limr(ii) <math>\ge 1$, ws(ii,j,k) = 0

(c)
$$\sum_{\substack{j=1\\(i,j,k)\in A}}^{\lim c(jj)} \left(x_{i,colrel(jj,j),k}^{(u)} - x_{i,colrel(jj,j),k}^{(l)} \right) = x_{i,colrel(jj,0),k}^{(u)} - x_{i,colrel(jj,0),k}^{(l)}$$

for $i=1,\ldots,rows,jj=1,\ldots,cc,k=1,\ldots,levs:limc(cc)\geq 1,ws(i,jj,k)=0$

$$0 \le x_{i,j,k}^{(u)} \le h_{i,j,k} \; ; \quad 0 \le x_{i,j,k}^{(l)} \le h_{i,j,k}$$
 for $i = 1, ..., rows, j = 1, ..., col, k = 1, ..., levs : (i,j,k) \in A$
$$x_{prow, pcol, pley}^{(u)} = prot \; ; \; x_{prow, pcol, pley}^{(l)} = 0$$

where:

$$c_{i,j,k} = \begin{cases} \max(0, v_{i,j,k}) & when \ (i, j, k) \in U \\ 0 & when \ (i, j, k) \in P \cup C \end{cases}$$

$$h_{i,j,k} = \max(0, v_{i,j,k})$$

Concepts: Skipping P's

 Often, providing additional protection to <u>one</u> targeted primary suppression (P) may protect additional P's

 Identifies the Ps that otherwise would result in a problem being done with objective=0 (no protection required)
 (Steel et al 2013)

 More than 99% of such primaries can be skipped. Time saved 99%, depending on the data

Concepts: Trials

A heuristic approach to optimize suppression between cells and value

- 1st trial establish a base pattern for optimal value suppressed
- 2nd trial shake off the excesses by inverting the cost for minimal number cells suppressed

Example

c_1	<i>c</i> ₂	c_3	total
10	60	100 (P = 20)	170

- Total
$$\operatorname{Cost}(Trial_1) = \begin{cases} 10*10+10*60=700 & if \ c_1, \ c_2=C \\ 20*60=1200 & if \ c_2=C \end{cases}$$

$$\text{- Total Cost}(Trial_1) = \begin{cases} 10*10+10*60=700 & if \ c_1, \ c_2 = C \\ 20*60=1200 & if \ c_2 = C \end{cases}$$

$$\text{- Total Cost }(Trial_2) = \begin{cases} \frac{10}{10}+\frac{10}{60}=\frac{7}{6} & if \ c_1, \ c_2 = C \\ \frac{20}{60}=\frac{1}{3} & if \ c_2 = C \end{cases}$$

 1^{st} trial choses c_1 & c_2 as complementary 2^{nd} trial eliminates c_1

Parameters Controlling Cell Selection Behavior In Optimization

- Alpha (α) globally changes the <u>relative</u> cost of large and small cells balancing between number and value suppressed (Wang JSM 2014), $\alpha \in (0,1]$
- Beta (β) assigns flat cost to cells that are "freeze", "unpublished", "dummy"
- costscale assigns a proportional cost determined by end users data priority

Costscale Applied on Column Total

Sales		County			Important cells?		
		1					
		1	2	3		Cost dou	ıble
	11	700	400	375	14	475	
Industry	22	1000	600	450	20	050	
_	33	100	375	650	13	125	
_ United States " U.S. Denart		1800	1375	1575	40	550	

α, β Applied on ASM2010

applied

505 cells saved from suppression

α		T	otal		Rating					
1	2265	653445897				a B applied				
.31	1705	649485679			++					
.311	1760		α	Total			Rating	Published		
.312	1760		1	2005	68783713	86		665	574354598	
.3125	1760		.3125	1932	68972380)5	+-	558	572005027	
.313	1760		.32	1906	68677798	37	++	560	570312702	
.314	1780	(.33	1885	68494822	27	++	557	571912231	
.315	1794	(.34	1899	68970280	00	+-	560	571935791	
.35	1848		.35	1906	69517494	1	+-	560	572118398	
			.5	2028	71281956	57		621	592225125	
			.8	2076	69979759	95		697	581803417	

Disclosure Avoidance Process

- 1. Gather requirement from subject area
- 2. Programmer runs cell suppression program
- 3. Subject area reviews suppression pattern
- 4. Revise requirements
- 5. Go to 2nd step (bottleneck)

Summary (Where We Are So Far)

Well-developed LP cell suppression methodology implemented in

- LP production software
- m-LP production software
- Used for 2012 econ census
- Advantages
 - Undersuppression eliminated
 - Oversuppression reduced
 - Speed almost satisfactory (need another 10x for big problems)
 - Program detects many data problems.
 - Program automatically decomposes data into the proper units for cell suppression.
 - User priorities can be addressed

Future enhancements/research

- R&M has a long list of items on the agenda
- A more robust m-LP

- Comparisons of Census LP system with others'
- Share with other agencies
- eConfidentiality

My GOAL: a User Controlled Process

- Current procedure
 - Users set up parameters
 - Programmers run programs
 - Users review output
 - Modify parameters as needed
 - Request additional program runs
- Vision remove the "bottleneck" of programmers running the program

eConfidentialityDisclosure Avoidance Application System

References

- B. Wang Improve LP Process in Cell Suppression, Proceedings of the Government Statistics Section, American Statistical Association, Alexandria, VA (2013) CD-ROM
- B. Wang Using Weighting to Improve Cell Suppression Pattern in Annual Survey of Manufactures, Proceedings of the Government Statistics Section, American Statistical Association, Alexandria, VA (2014) CD-ROM
- P. Steel et al Re-development of the Cell Suppression Methodology at the US Census Bureau, UNECE Ottawa, Canada, 28-30 October 2013

Acknowledgements

Philip Steel, Katherine (Jenny) Thompson – presentation guidance

R & M team members: Paul Massell, Richard Moore, John Slanta, James Fagan, Phil Steel, Vitoon Harusadangkul – methodology and software development

Chris Chapman (BLS) - invitation and organization of session

Thanks!

Comments and Suggestions?
Bei.wang@census.gov