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Introduction

• What is “small area estimation” ?
• Small area estimation is any of several statistical techniques

involving estimation of parameters in small ‘sub-populations’
of interest included in a larger ‘survey’.
• The term ‘small area’ in this context generally refers to a

small geographical area such as a county, census tract or a
school district.
• It can also refer to a ‘small domain’ cross-classified by several

demographic characteristics, such as age, sex, ethnicity etc.
• I want to emphasize that it is not just the area, but the

‘smallness’ of the targeted population within an area which
constitutes the basis of small area estimation.
• For example, if a survey is targeted towards a population of

interest with prescribed accuracy, the sample size in a
particular subpopulation may not be adequate to generate
similar accuracy.
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• A domain (area) estimator is ‘direct’ if it is based only on the
domain-specific sample data.

• A domain is regarded as ‘small’ if domain-specific sample is
not large enough to produce estimates of desired precision.

• Domain sample size often increases with population size of
the domain, but that need not always be the case.

• This requires use of ‘additional’ data, be it other
administrative data not used in the original survey, or data
from other related areas.

• The resulting estimates are called ‘indirect’ estimates that
‘borrow strength’ for the variable of interest from related areas
and/or time periods to increase the ‘effective’ sample size.

• This is usually done through the use of models, mostly
‘explicit’, or at least ‘implicit’ that links the related areas
and/or time periods.
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• Historically, small area statistics have long been used.

• For example, such statistics existed in eleventh century
England and seventeenth century Canada based on either
census or on administrative records.

• Demographers have long been using a variety of indirect
methods for small area estimation of population and other
characteristics of interest in postcensal years.

• In recent years, the demand for small area statistics has
greatly increased worldwide.

• The need is felt for formulating policies and programs, in the
allocation of government funds and in regional planning.

• Legislative acts by national governments have created a need
for small area statistics.

• A good example is SAIPE (Small area Income and Poverty
Estimation) mandated by the US Legislature.
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• Demand from the private sector has also increased because
business decisions, particularly those related to small
businesses, rely heavily on local socio-economic conditions.

• Small area estimation is of particular interest for the
economics in transition in central and eastern European
countries and the former Soviet Union countries.

• In the 1990’s these countries have moved away from
centralized decision making.

• As a result, sample surveys are now used to produce estimates
for large areas as well as small areas.
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• Some Examples.

• Hierarchical Bayes estimates of overweight prevalnce of adults
by states using data from NHANES III. (Malec, Davis and
Cao, 1999);

• Model-based county estimates of crop acreage using remote
sensing satellite data as auxiliary information (Battese, Harter
and Fuller, 1988).

• Income for small places (Fay and Herriott, 1979).

• Model-based county estimates of the proportion of K-12
children under poverty.

• Estimation of Median Household Income.

• Empirical and Hierarchical Bayes methods for different small
area poverty measures (Molina and Rao, 2010).

Malay Ghosh Small Area Estimation



Introduction Synthetic Estimation Model-Based Small Area Estimates Benchmarking Fixed Versus Random Effects

Synthetic Estimation

• An estimator is called ‘Synthetic’ if a direct estimator for a
large area covering a small area is used as an indirect
estimator for that area.
• The terminology was first used by the U.S. National Center

for Health Statistics.
• A strong underlying assumption is that the small area bears

the same characteristic for the large area.
• For example, if y1, · · · , ym are the direct estimates of average

income for m areas with population sizes N1, · · · ,Nm, we may
use the overall estimate ȳs =

∑m
j=1 Njyj/N for a particular

area, say, i ,where N =
∑m

j=1 Nj .
• The idea is that this synthetic estimator has less mean

squared error (MSE) compared to the direct estimator yi if
the bias ȳs − yi is not too strong.
• On the other hand, a heavily biased estimator can affect the

MSE as well.
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• Hansen, Hurwitz and Madow (1953, pp 483-486) applied
synthetic regression estimation in the context of radio
listening. (Rao and Molina. Small Area Estimation, p. 37).

• Synthetic regression estimation of the median mumber of
radio stations heard during the day in each of more than 500
counties in the US.

• The direct estimate yi of the true (unknown) median Mi was
obtained from a radio listening survey based on personal
interviews.

• The estimate xi of Mi , obtained from a mail survey was used
as a single covariate in the linear regression of yi on xi .

• The mail survey was first conducted by sampling 1,000
families from each county area and mailing questionnaires.

• The xi were biased due to nonresponse (about 20% response
rate) and incomplete coverage, but were anticipated to have
high correlation witn the Mi .
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• Direct estimates yi for a sample of 85 county areas were
obtained through an intensive interview survey.

• The seletion was made by first stratifying the population
county areas into 85 strata based on geographical region and
available radio service type.

• Then one county was selected from each startum with
probability proportional to the estimated number of families in
the counties.

• A subsample of area segments was selected from each of the
sampled county areas .

• Families within the selected area segments were interviewed.

• Corr(yi , xi ) = .70.

• For nonsampled counties, regression synthetic estimates were
M̂i = .52 + .74xi .
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• Another example of Synthetic Estimation is due to Maria
Gonzalez and Christine Hoza (JASA, 1973, pp 7-15).

• Their objective was to develop intercensal estimates of various
population characteristics for small areas.

• They discussed syenthetic estimates of unemployment where
the larger area is a geographic division and the small area is a
county.

• Let pij denote the proprtion of labor force in county i that
corresponds to cell j (j = 1, · · · ,G ).

• Let uj denote the corresponding unemployment rate for cell j
based on the geographic division where county i belongs.

• Then the synthetic estimate of the unemployment rate for
county i is given by u∗i =

∑G
j=1 pijuj .

• These authors also suggested synthetic regression estimate for
unemployment rate.
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• Composite Estimators: These estimators are weighted
averages of Direct Estimators and Synthetic Estimators.

• The motivation is to balance the design bias of synthetic
estimators and the large variability of direct estimators in a
small area.

• yij : characteristic of interest for the jth unit in the ith area;
j = 1, · · · ,Ni ; i = 1, · · · ,m.

• x ij : vector of auxiliary characteristics for the jth unit in the
ith local area.

• For simplicity, take xij as a scalar.

• Population means: Ȳi =
∑Ni

j=1 yij/Ni ; X̄i =
∑Ni

j=1 xij/Ni .

• Sampled observations: yij , j = 1, · · · , ni .
• ȳi =

∑ni
j=1 yij/ni ; x̄i =

∑ni
j=1 xij/ni .
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• Direct Estimator (Ratio Estimator) of Ȳi is ȳRi = (ȳi/x̄i )X̄i .

• Ratio Synthetic Estimator of Ȳi is (ȳs/x̄s)X̄i , where
ȳs =

∑m
i=1 Ni ȳi/

∑m
i=1 Ni and x̄s =

∑m
i=1 Ni x̄i/

∑m
i=1 Ni .

• A Composite Estimator of Ȳi is
(ni/Ni )ȳi + (1− ni/Ni )(ȳs/x̄s)X̄ ′i , where

X̄ ′i = (Ni − ni )
−1

∑Ni
j=ni+1 xij/(Ni − ni ).

• Ni X̄i = ni x̄i + (Ni − ni )X̄
′
i .

• The Composite Estimator can be given a model-based
justification as well. (Holt, Smith and Tomberlin, JASA,
1979, 405-410)
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• A model-based justification of
(ni/Ni )ȳi + (1− ni/Ni )(ȳs/x̄s)X̄ ′i .

• Consider the model yij
ind∼ (bxij , σ

2xij).

• Best linear unbised estimator of b is obtained by minimizing∑m
i=1

∑ni
j=1(yij − bxij)

2.

• The solution is b̂ = ȳs/x̄s .

• Now estimate Ȳi = (
∑ni

j=1 yij +
∑Ni

j=ni+1 yij)/Ni by∑ni
j=1 yij/Ni + b̂

∑Ni
j=ni+1 xij/Ni .

• This simplifies to the expression in the top.
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Model-Based Small Area Estimation: Area Level Models

• Small area models link explicitly the sampling model with
random area specific effects.

• The latter accounts for between area variation beyond that is
explained by auxiliary variables.

• We classify small area models into two broad types.

• First the “area level” models that relate small area direct
estimators to area-specific covariates.

• Such models are necessary if unit (or element) level data are
not available.

• Second the “unit level” models that relate the unit values of a
study variable to unit-specific covariates.

• Indirect estimators based on small area models will be called
“model-based estimators”.
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• The model-based approach to small area estimation offers
several advantages.

• First “optimal” estimators can be derived under the assumed
model.

• Second area specific measures of variability can be associated
with each estimator unlike global measures (averaged over
small areas) often used with traditional indirect estimators.

• Third models can be validated from the sample data.

• Fourth, one can enetertain a variety of models depending on
the nature of the response variables and the complexity of
data structures.

• One of the key ongoing application of model-based estimation
is the Small Area Income and Poverty Estimation (SAIPE)
project of the US Bureau of the Census.
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• The classic small area model is due to Fay and Herriott
(JASA, 1979).

• Sampling Model: yi = θi + ei , i = 1, . . . ,m.
Linking Model: θi = xT

i b + ui , i = 1, . . . ,m.

• Target is estimation of the θi , i = 1, . . . ,m.

• It is assumed that ei are independent (0,Di ), where the Di are
known and the ui are iid (0,A), where A is unknown.

• The asumption of known Di can be put to question because
they are, in fact, sample estimates.

• But the assumption is needed to avoid nonidentifiablity in the
absence of microdata which can be used for modeling the Di

as well.

• This is evident when one writes yi = xT
i b + ui + ei .
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• Some notations: y = (y1, · · · , ym)T ; e = (e1, · · · , em)T ;
u = (u1, · · · , um)T ; X = (xT

1 , · · · , xT
m); b = (b1, · · · , bp)T .

• We assume X has rank p(< m).

• In vector notations, we write y = θ + e and θ = Xb + u.

• For known A, the best linear unbiased predictor (BLUP) of θ
is (1− Bi )yi + BixT

i b̃ where b̃ = (XTV−1X )−1XTV−1y ,
where V = Diag(D1 +A, · · · ,Dm +A) and Bi = Di/(A+Di ).

• The BLUP is the best unbiased predictor under assumed
normality.
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• An alternative Bayesian formulation.

• yi |θi
ind∼ N(θi ,Di ); θi |b

ind∼ N(xT
i b,A).

• Then the Bayes estimator of θi is (1− Bi )yi + BixT
i b, where

Bi = Di/(A + Di ).

• If instead we put a uniform(Rp) prior for b, the Bayes
estimator of θi is the same as its BLUP.

• But A is unknown.

• A hierarchical Bayesian will put a prior on A as well.

• π(b,A) = 1. (Morris, 1983, JASA ).

• Otherwise, estimate A to get the resulting empirical Bayes or
empirical BLUP.

• Fay and Herriott: Solve iteratively the two equations
(i) b̃ = (XTV−1X )−1XTV−1y ;
(ii)

∑m
i=1(yi − xT

i b̃)2 = m − p.
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• FH iterative method may not be too convenient for analytical
studies.

• Prasad and Rao (1990, JASA) suggested instead a
unweighted least squares approach to estimate A.

• b̂L = (XTX )−1XTy .

• E ||y − Xb̂L||2 = (m − p)A +
∑m

i=1 Di (1− ri ),
ri = xT

i (XTX )−1x i , i = 1, · · · ,m.

• ÂL = max(0,
||y−X ˆbL||2−

∑m
i=1 Di (1−ri )

m−p ).

• B̂L
i = Di/(ÂL + Di ).

• θ̂PR = (1− B̂L
i )yi + B̂L

i b̃(ÂL).

• b̃(ÂL) = [XTV−1(ÂL)X ]−1XTV−1(ÂL)y .
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• Prasad and Rao also found an approximation to the mean
squared eror (Bayes risk) of their EBLUP or EB estimators.

• Under the subjective prior θi
ind∼ N(xT

i b,A), the Bayes

estimator of θi is θ̂Bi = (1−Bi )yi +BixT
i b, Bi = Di/(A+Di ).

• Also, write θ̃EBi (A) = (1− Bi )yi + BixT
i b̃(A)

• θ̂EBi ≡ θ̃EBi (ÂL) = (1− B̂L
i )yi + B̂L

i xT
i b̃(ÂL).

• E (θ̂EBi − θi )2 =

E (θ̂Bi − θi )2 + E (θ̃EBi (A)− θ̂i
B

)2 + E (θ̂EBi − θ̃EBi (A))2.

• The first term is the Bayes risk if boh b and A were known

• The second term is the additional uncertainty due to
estimation of b when A is known.

• The third term is extra uncertainty due to estimation of A.
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• E (θi − θ̂Bi )2 = Di (1− Bi ) = g1i (A), say;

• E (θ̂EBi (A)− θ̂Bi )2 = B2
i x

T
i (XTV−1X )−1x i = g2i (A), say;

• E (θ̂EBi − θ̂EBi (A))2 .
= 2B2

i (Di + A)−1A2
∑m

i=1(1− Bi )
2/m2 =

g3i (A), say.

• This MSE approximation (or Bayes risk) is correct up to
O(m−1).

• Prasad and Rao: An estimator of this MSE correct up to
O(m−1) is g1i (Â) + g2i (Â) + 2g3i (Â).

• E [g1i (Â)] = g1i (A)− g3i (A) + o(m−1).

• A further refinement to this approximation is due to Datta,
Rao and Smith (Biometrika, 2005).
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• An Example: Estimation of Median Income of Four Person
Families.
• The U.S. Dept. of Health and Human Services provides

energy assistance to low-income families.
• Eligibility for the program is determined by a formula where

the most important variable is an estimate of the current
median income of four-person families by states (the 50 states
and the District of Columbia).
• The Bureau of the Census, by an informal agreement,

provided such estimates to the HHS through a linear
regression methodology since the latter part of the 1970’s.
• Sample estimates of the state medians for the current year (c)

as obtained from the Current Population Survey (CPS) were
used as dependent variables.
• Adjusted census median (c) defined as the base year (the

recentmost decennial census) census median (b) times the
ratio of the BEA PCI in year (c) to year (b) was used as the
dependent variable.
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• Following the suggestion of Fay (1987), we used the census
median for the base year (b) as a second independent variable.

• We compared the EB estimates, CPS estimates, and the
Bureau of the Census estimates against the 1979 census
estimates.

• The comparison was based on four criteria recommended by
the panel on small area estimates of population and income
set up by the committee on National Statistics.

• Average Relative Bias = (51)−1
∑51

i=1 |ei − ei ,TR |/ei ,TR .

• Average Squared Relative Bias
= (51)−1

∑51
i=1(ei − ei ,TR)2/e2

i ,TR .

• Average Absolute Bias = (51)−1
∑51

i=1 |ei − ei ,TR |.
• Average Squared Deviation = (51)−1

∑51
i=1(ei − e,TR)2.
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Table 1. Average Relative Bias, Average Squared Relative Bias,
Average Absolute Bias and Average Squared Deviations (in

100,000) of the Estimates.

Bureau Estimate Sample Median EB

Aver. rel. bias 0.325 0.498 0.204
Aver. sq. rel bias 0.002 0.003 0.001
Aver. abs. bias 722.8 1090.4 450.6
Aver. sq. dev. 8.36 16.31 3.34
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• Lahiri and Rao (JASA, 1995): Avoid normality assumption of
the random effects, and assume instead its 8th moment in the
Fay-Herriott model.

• Datta and Lahiri (Statistica Sinica, 2000): ML and REML
estimation of variance components in linear mixed models.

• Das, Jiang and Rao (Annals of Statistics, 2004): Same goal
for more general mixed models.

• Jiang, Lahiri and Wan: Annals of Statistics, 2002): Second
order correct MSE estimation of EBLUP

• Chen and Lahiri (2002): Weighted version of
Jiang-Lahiri-Wan jackknife.

• Butar and Lahiri (JSPI, 2003), Pfeffermann and Tiller (2002):
Botstrap estimation of the variance components.

• Yoshimori and Lahiri (2014; Journal of Multivariate Analysis):
Adjusted Maximum Likelihood.

• Fuller (Contemporary Mathematics, 1990), Booth and Hobert
(JASA, 1998): conditional approach for estimating the MSE.
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• General Exponential Family Model: yi |θi are independent with
f (yi |θi ) = exp[yiθi − ψ(θi ) + h(yi ), i = 1, . . . ,m.

• Bernoulli (pi ): θi = logit(pi ) = log(pi/(1− pi )).

• Poisson(λi ): θi = log(λi ).

• Model the θi as independent N(xT
i b,A) and proceed.

• Alternately use beta priors for the pi and gamma priors for the
λi .

• Estimate the prior parameters in an empirical Bayes approach
or put a prior distribution on the prior parameters in a
hierarchical Bayes approach.

• Malec et al. (JASA; 1997): An example of small area
estimation with binary data in National Health Interview
Survey.

• Jiang and Lahiri (2001; Annals of the Institute of Statistical
Mathematics) : A jackknife Method for MSE estimation.
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• Jiang,Nguyen and Sunil Rao (JASA; 2011): Evaluate the
performance of a BLUP or EBLUP using only the sampling

model yi
ind∼ (θi ,Di ).

• Recall Bi = Di/(A + Di ).

• E [{(1−Bi )yi +BixT
i b−θi}2|θi ] = (1−Bi )

2Di +B2
i (θi−xT

i b)2.

• E (yi − xT
i b)2 = Di + (θi − xT

i b)2.

• Unbiased estimator of the above MSE is
(1− Bi )

2Di − B2
i Di + B2

i (yi − xT
i b)2.

• Minimize the above wrt b and A. The resulting quantities are
referred to as observed best predictive estimators of b and A.

• They refer to the resulting estimators of the θi as “observed
best predictors”.

• Use Fay-Herriott or Prasad-Rao method for estimation of b
and A.
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Model Based Small Area Estimation: Unit Specific Models

• Unit Specific Models: observations are available for the
sampled units in the local areas.

• In addition, unit-specific auxiliary information is available for
these sampled units, and possibly for the non-sampled units as
well.

• m local areas. The ith local area has Ni units with a sample
of size ni .

• Sampled observations: yi1, . . . , yini , i = 1, . . . ,m

• Model; yij = xT
ij b + ui + eij , j = 1, . . . .Ni , i = 1, . . . ,m.

• ui ’s and eij ’s are mutually independent with the ui iid (0, σ2
u),

and the eij independent (0, σ2ψij).
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• Nested Error Regression Model (Battese, Harter and Fuller,
JASA, 1988).

• yij : area devoted to corn or soybean for the jth segment in the
ith county.

• x ij = (1, xij1, xij2)T , where xij1 denotes the no. of pixels
classified as corn for the jth segment in the ith county and
xij2 denotes the no. of pixels classified as soybean for the jth
segment in the ith county.

• b = (b0, b1, b2)T is the vector of regression coefficients.

• They took ψij = 1.

• A second example (Ghosh and Rao, 1994; Statistical Science):

• yij : wages and salaries paid by the jth business firm in the ith
census division in Canada.

• x ij = (1, xij)
T , where xij denotes the gross business income of

the jth business firm in the ith census division.

• Here ψij = xij was found more appropriate than the usual
model involving homoscedasticity.
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• Consider the Battese, Harter and Fuller (1988) model.

• In matrix notations, we write y i = (yi1, . . . , yini )
T ,

X i = (x i1, . . . , x ini )
T , e i = (ei1, . . . , eini )

T , i = 1, . . . ,m.

• The model is y i = X ib + ui1ni + e i , i = 1, . . . ,m.

• E (y i ) = X ib and V i = V (yi ) = σ2
e I ni + σ2

uJni .

• Also let x̄ i =
∑ni

j=1 x ij/ni and ȳi =
∑ni

j=1 yij/ni .

• The target is estimation of X̄T
i b + ui1ni , where

X̄ i = N−1
i

∑Ni
j=1 x ij , i = 1, . . . ,m

• For known σ2
u and σ2

e , the BLUP of x̄T
i b + ui1ni is

(1− Bi )y i + Bi x̄T
i b̃, where Bi = (σ2

e/ni )/(σ2
e/ni + σ2

u) and

b̃ = (
∑m

i=1 XT
i V−1

i X i )
−1(

∑m
i=1 XT

i V−1
i y i ).

• Hence, BLUP of X̄T
i b + ui1ni is

[(1− B)[ȳi + (X̄ i − x̄ i )
T b̃] + Bi X̄

T
i b̃.
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• Method of moment estimation to get unbiased estimators of
unknown σ2

u and σ2
e .

• The EBLUP of X̄T
i b + ui is now found by substituting these

estimates of σ2
u and σ2

e in the BLUP formula.

• This involves two ordinary least squares regression.

• Estimation of σ2
e involves moment estimation based on the

sum of squares
∑m

i=1

∑ni
j=1(yij − ȳi )

2.

• The next equation involves residual sum of squares by
regressing yij − ȳi on the xij − x̄i involving those areas with
sample size exceeding 1.

• A full hierarchical Bayesian approach appears in Datta and
Ghosh (1991, Annals of Statistics).
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• Predict areas under corn and soybeans for 12 counties in
North Central Iowa based on 1978 June Enumerative Survey
data as well as LANDSAT satellite data.

• The USDA Statistical Reporting Service field staff determined
the area of corn and soybeans in 37 sample segments ( each
segment was about 250 hectares ) of 12 counties in North
Central Iowa by interviewing farm operators.

• Based on LANDSAT readings obtained during August and
September 1978, USDA procedures were used to classify the
crop cover for all pixels ( a term for picture element about
0.45 hectares ) in the 12 counties.

• The next table gives HB predictors ( eHB ), the EB predictors
(eEB), the Battese, Harter and Fuller predictors ( eBHF ), and
the associated standard errors sHB , sEB , and sBHF respectively
for mean areas under soybeans in the 12 counties.
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Table 2. The predicted hectares of soybeans and standard errors

County eHB eEB eBHF sHB sEB sBHF

Cerro Gordo 78.8 78.2 77.5 11.7 11.6 12.7
Franklin 67.1 65.9 64.8 8.2 7.5 7.8
Hamilton 94.4 94.6 95.0 11.2 11.4 12.4
Hancock 100.4 100.8 101.1 6.2 6.1 6.3
Hardin 75.4 75.1 74.9 6.5 6.4 6.6
Humboldt 81.9 80.6 79.2 10.4 9.3 10.0
Kossuth 118.2 119.2 120.2 6.6 6.0 6.2
Pocahontas 113.9 113.7 113.8 7.5 7.5 7.9
Webster 110.0 109.7 109.6 6.6 6.6 6.8
Winnebago 97.3 98.0 98.7 7.7 7.5 7.9
Worth 87.8 87.2 86.6 11.1 11.1 12.1
Wright 111.9 112.4 112.9 7.7 7.6 8.0
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Benchmarking

• The model-based small area estimates, when aggregated may
not equal the corresponding estiamte for the larger area.
• On the other hand the direct estimate for a larger area, for

example, a national level estimate, is quite reliable.
• Moreover, matching the latter may be a good idea, for

instance to protect against model failure and very often for
political reasons as well.
• Suppose θi is the ith area mean and θT =

∑m
i=1 wiθi is the

overall mean, where wj may be the known proportion of units
in the jth area.
• The direct estimate for θT is

∑m
i=1 wj θ̂i which is usually not

equal to a model based estimator.
• In order to address this, people have suggested (i) ratio

adjusted estimators θ̂RAi = θ̂EBi (
∑m

j=1 wj θ̂j)/(
∑m

j=1 wj θ̂
EB
j )

and (ii) difference adjusted estimator
θ̂DAi = θ̂EBi +

∑m
j=1 wj θ̂j −

∑m
j=1 wj θ̂

EB
j .
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• One criticism against such adjustments is that a common
adjustment is used for all small areas regardless of their
precision.

• Wang, Fuller and Qu (2008: Survey Methodology) proposed
instead minimizing

∑m
j=1 φjE (ej − θj)2 for specified weights

φj(> 0) subject to the constraint
∑m

j=1 wjej = θ̂T .

• The resulting estimate of θi is
θ̂WFQ
i = θ̂BLUPi + λi (

∑m
j=1 wj θ̂j −

∑m
j=1 wj θ̂

BLUP
j ),

where λi = wiφ
−1
i /(

∑m
j=1 w

2
j φ
−1
j ).

• Datta, Ghosh, Steorts and Maples (2011) took instead a
general Bayesian approach and minimized instead∑m

j=1 φj [E (ej − θj)2|θ] subject to
∑m

j=1 wjej = θ̂T and
obtained the estimator
θ̂ABi = θ̂Bi + λi (

∑m
j=1 wj θ̂j −

∑m
j=1 wj θ̂

B
j ), with the same λi .
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• The approach of Datta, Ghosh, Steorts and Maples extends
readily to multiple benchmarking constraints.

• In a frequentist context. Bell, Datta and Ghosh (Biometrika,
2013) extended the work of Wang, Fuller and Qu to multiple
benchmarking constraints.

• There are situations also when one needs two-stage
benchmarking.

• An example is the cash rent estimates of the Natural
Agricultural Statistics Service (NASS) where one needs the
dual control of matching the aggregate of county level cash
rent estimates to the corresponding agricultural district
(comprising of several counties) level estimates, and the
aggregate of the agricultural district level estimates to the
final state level estimate.

• Berg, Cecere, Erciulescu and Ghosh (2019; Survey
Methodology) adopted an approach of Ghosh and Steorts
(2013; Test) to address the NASS problem.
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• Second order unbiased MSE estimators are not typically
available for ratio adjusted benchmaked estimators.

• In contrast, second order unbiased MSE estimators are
available for difference adjusted benchmaked estimators,
namely, θ̂DB

i = θ̂EBi + (
∑m

j=1 wj θ̂j −
∑m

j=1 wj θ̂
EB
j ).

• Steorts and Ghosh (2013; Statistica Sinica) have shown that
MSE(θ̂DB

i ) = MSE(θ̂EBi ) + g4(A) + o(m−1), where MSE(θ̂EBi )
is the same as the one given in Prasad and Rao (1990; JASA).

• A second order unbiased estimator of MSE(θ̂DB
i ) is obtained

by adding g4(Â) to the Prasad-Rao second order unbiased
estimator of MSE(θ̂EBi ).
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• There are two available approaches for self benchmarking
which do not require any adjustment to the EBLUP
estimators.
• The first, proposed in You and Rao (2002: Canadian Journal

of Statistics), replaces the estimator b̂ in EBLUP by an
estimator which depends both on b̂ as well as the weights wi .
• This changes the MSE calculation.
• Recall the Prasad-Rao MSE of EBLUP given by

MSE(θ̂EBi ) = g1i + g2i + g3i , where g1i = Di (1− Bi ),
g2i = B2

i x
T
i (XTV−1X )−1x i and

g3i = 2D2
i (A + Di )

−3m−2{
∑m

j=1(A + Dj)
2}.

• For the Benchmarked EBLUP, g2i changes.
• The second approach is by Wang, Fuller and Qu (2008;

Survey Methodology) which uses an augmented model with
new covariates (x i ,wiDi ).
• This second approach was extended by Bell, Datta and Ghosh

(2013; Biometrika) to accommodate multiple benchmarking
constraints.
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Fixed Versus Random Effects

• A different but equally pertinent issue has recently surfaced in
the small area literature.
• This concerns the need for random effects in all areas, or

whether even fixed effects models would be adequate for
certain areas ?
• Datta, Hall and Mandal (2011; JASA) were the first to

address this problem.
• They suggested essentially a preliminary test-based approach,

testing the null hypothesis that the common random effect
variance was zero.
• Used a fixed or a random effects model for small area

estimation based on acceptance or rejection of the null
hypothesis.
• This amounted to use of synthetic or regression estimates of

small area means upon acceptance of the null hypothesis, and
composite estimates which were weighted averages of direct
and regression estimators otherwise.
• Further research in this area is due to Molina, Rao and Datta

(2015; Survey Methodology).
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• The DHM procedure works well when the number of small
areas is moderately large, but not necessarily when the
number of small areas is very large.

• In such situations, the null hypothesis of no random effects is
very likely to be rejected.

• This is primarily due to a few large residuals causing significant
departure of direct estimates from the regression estimates.

• This was realized by Datta and Mandal (2015;JASA) who
proposed instead a mixture model for random effects with
“spike and slab priors”.

• These priors put a positive mass at zero resulting in a spike at
zero, while for the slab part, they used a normal distribution
with zero means and a common unknown variance across all
small areas.

• Their approach amounts to taking δiui instead of ui for
random effects where the δi and the ui are independent with
δi iid Bernoulli(γ) and ui iid N(0, σ2

u).
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• In contrast to the spike and slab priors of Datta and Mandal,
Tang, Ghosh, Ha and Sedransk (2018; JASA) considered a
different class of priors which meets the same objective. as
spike and slab priors, but uses instead absolutely continuous
priors.

• Moreover, these priors allow different variance components for
different small areas, and intend to capture local small area
effects better than the priors of Datta and Mandal who
considered prior variances to be either zero or else common
across all small areas.

• This seems to be particularly useful when the number of small
areas is very large, for example, when one considers more than
3000 counties of the US, where one expects a wide variation
in the county effects.

• The proposed class of priors, is usually referred to as
“global-local shrinkage priors”.
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• References: Carvalho, Polson and Scott (2010; Biometrika)
Polson and Scott (2010; Bayesian Statistics).

• These priors are essentially scale mixtures of normals.

• Goal: capture potential “sparsity”, which means lack of
significant contribution by many of the random effects, by
assigning large probabilities to random effects close to zero.

• But also assign non-trivial probabilities to random effects
which differ significantly from zero.

• This is achieved by employing two levels of parameters to
express prior variances of random effects.

• The first, the “local shrinkage parameters”, act at individual
levels, while the other, the “global shrinkage parameter” is
common for all random effects.

• Fay and Herriott: only one global parameter; Datta and
Mandal: the variance parameter of random effects is either
zero or common across all small areas.
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• Specifically, the radom effects ui have independent N(0, λ2
i A)

priors.

• While the global parameter A tries to cause an overall
shrinking effect, the local shrinkage parameters λ2

i are useful
in controlling the degree of shrinkage at the local level.

• If the mixing density corresponding to local shrinkage
parameters is appropriately heavy-tailed, the large random
effects are almost left unshrunk.

• The class of “global-local” shrinkage priors includes the three
parameter beta (TPBN) priors (Armagon, Clyde and Dunson,
2011; Advances in Neural Information Processing Systems),
Generalized Double Pareto priors (Armagon, Dunson and Lee,
2012; Statistica Sinica).

• TPBN includes the now famous horseshoe (HS) priors (Scott
and Berger, 2010; Annals of Statistics) and the
normal-exponential-gamma priors (Griffin and Brown, 2005)
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• Goal: Estimate 5-year (2007–2011) county-level overall
poverty ratios.

• There are 3,141 counties in the data set.

• Covariates: foodstamp participation rates (0.81).

• Estimated poverty ratios are between 3.3% (Borden County,
TX) and 47.9% (Shannon County, SD). The median is 14.7%.

• In Mississippi, Georgia, Alabama and New Mexico, 55%+
counties have poverty rates > the third quartile (18.9%).

• In New Hampshire, Connecticut, Rhode Island, Wyoming,
Hawaii and New Jersey, 70%+ counties have poverty rates <
the first quartile (11.1%).
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Figure: Map of posterior means of θ’s.
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Variable Transformation

• Often the normality assumption can be justified only after
transformation of the original data.

• Then one performs the analysis based on the transformed
data, but transform back properly to the original scale to
arrive at the final conclusion.

• One common example is transformation of skewed positive
data, for example, income data where log transformation gets
a closer normal approximation.

• Slud and Maiti (2006; JRSS B) and Ghosh and Kubokawa
(2015; Biometrika) took this approach, providing final results
for the back-transformed original data.
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• For example, consider a multiplicative model yi = φiηi with
zi = log(yi ), θi = log(φi ) and ei = log(ηi ).

• Fay-Herriott (1979; JASA) model (i) zi |θi
ind∼ N(θi ,Di ) and

(ii) θi
ind∼ N(xT

i β,A).

• θi has the N(θ̂Bi ,Di (1− Bi )) posterior,

θ̂Bi = (1− Bi )zi + BixT
i β, Bi = Di/(A + Di ).

• Now E (φi |zi ) = E [exp(θi )|zi ] = exp[θ̂Bi + (1/2)Di (1− Bi )].
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• Another interesting example will be variance stabilizing
transformation.

• For example suppose yi
ind∼ Bin(ni , pi ).

• Arc sin transformation zi = sin−1((2yi/ni )− 1).

• One can start with zi
ind∼ N(θi , 1/ni ), where

θi = sin−1(2pi − 1).

• Back transformation: pi = (1/2)[1 + sin(θi )].

• Another is the Poisson model for count data.

• yi
ind∼ Poisson(λi ).

• Then one models zi = y
1/2
i as independent N(θi , 1/4) where

where θi = λ
1/2
i .

• An added advantage here is that the assumption of known Di

which is really untrue, can be avoided.
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MIscellaneous Other Topics

• Design consistency of small area estimators.

• Spatial and Space-Time Models.

• Measurement errors in the covariates.

• Poverty counts for small areas.

• Empirical Bayes confidence intervals.

• Robust small area estimation.

• Misspecification of linking models.

• Informative sampling.

• Constrained small area estimation.

• Disease Mapping

• Etc, Etc., Etc.
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